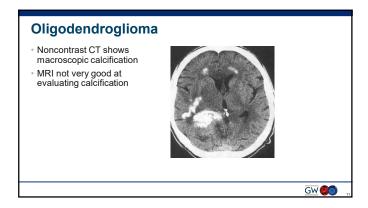
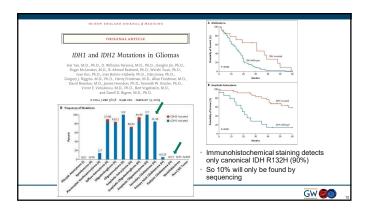
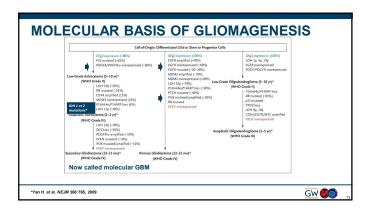


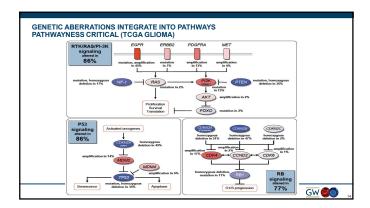
Staging & Clas	ssification	of Gliomas	
 TNM classification not relevant 	WHO Classification	Histologic Subtype	
 Histology and grade determined by cellular 	Grade I	Pilocytic astrocytoma	
characteristics and molecular testing	Grade II	Astrocytoma Oligodendroglioma	No more
Primary gliomas rarely	Grade III	Anaplastic astro Anaplastic oligo	oligoastrocytoma
spread outside of the central nervous system	Grade IV	Glioblastoma IDH mut astrocytoma	Important distinction between these grade 4 tumors
			GW 🎒

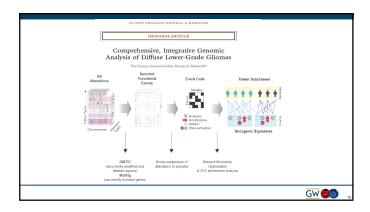
Gliomas: Median Survival histo Histologic Grading	orical Importance of
Tumor Type	MS (mos)
Low-grade oligodendroglioma	~120
Low-grade astrocytoma	~60
Anaplastic oligodendroglioma	~60
Anaplastic astrocytoma	~36
Glioblastoma	12 - 15
	GW 🚳

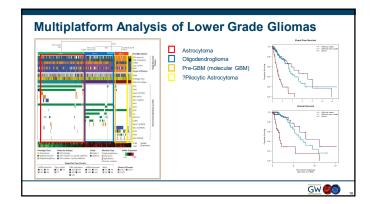

Glioblastoma Key Features Histology Necrosis, mitosis, neovascularization and pseudopallisading WHO Grade 4 Median Survival 12-15 months

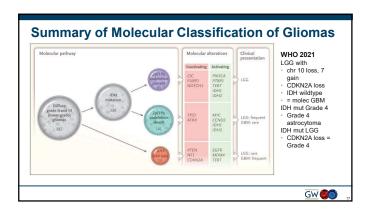

Glioblastoma		
Rapid progression Enhancing tumor Surrounding edema contains tumor	diva ad diva	
T1 post-contrast T2		
		GW 🍪 🗼

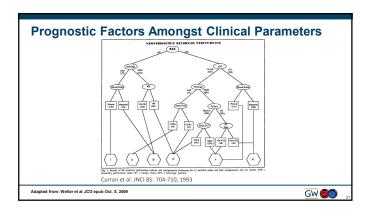

Histone mutated glioma Mutations in H3 K27 first noted in pediatric diffuse intrinsic pontine glioma (DIPG) Midline tumors in adults have also been found to harbor H3K27 mutations (H 3.3 or 3.1) Hemispheric tumors in adult can harbor G34 histone mutation Significance All histone mutated gliomas are WHO Grade 4 Molecular profile distinct from GBM or IDH mutated tumors Role of chemoradiation unclear (no benefit in pediatric DIPG)


GW 🍩


Oligodendroglioma Histology reveals characteristic "fried egg" appearance Often microscopic and macroscopic calcification Classified as low-grade or anaplastic (WHO Grade 2 or 3) Very responsive to treatment: chemotherapy and radiation Definitive classification by 1p19q allelic chromosomal deletion Dense network of branching capitlaries Clear cytoplasm and well-defined plasma membrane



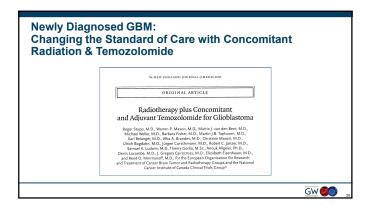


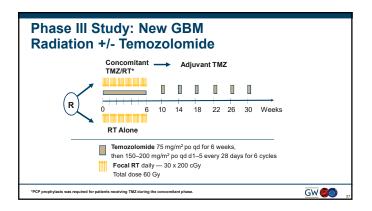


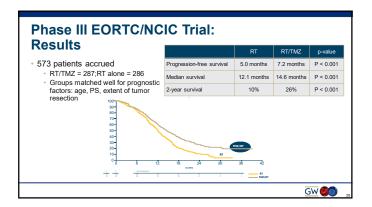
Cancer Risk/Protective Factors	
Established risk factors High-dose radiation Hereditary syndromes Male Increasing age Race (comparing white vs. African origin)	
Probable risk factors Family history of primary brain tumors Mutagen sensitivity (lab-based test) Allergies and asthma (protective) Chickenpox or anti-VZV (protective)	
	GW 🚳 18

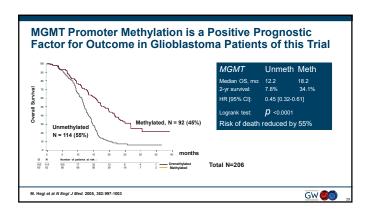
Genet	ic Syndromes with	n High Risk of Brain Tumors	5
	Genetic Syndrome	Associated Chromosome or gene	
	 Neurofibromatosis 1 	Chromosome 17q11	
	 Neurofibromatosis 2 	 Chromosome 22q12 	
	 Tuberous sclerosis 1 	 Chromosome 9q34 	
	 Tuberous sclerosis 2 	 Chromosome 16p13 	
	 Li-Fraumeni 	 Chromosome 17p13 	
	 Turcot Syndrome and Multiple hamartoma syndrome 	 APC, hMLH1, hMSH2, PMS2, PTEN 	
	Lynch Syndrome	Mismatch repair genes	
		GW 👀	15

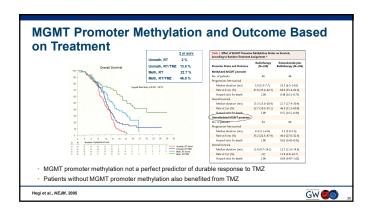
Clinical Prognostic Factors	
Tumor grade IDH mutational status Age Functional status (usually KPS) Extent of resection (somewhat controversial) Tumor location (may correlate with functional status) Radiation therapy	
	GW @

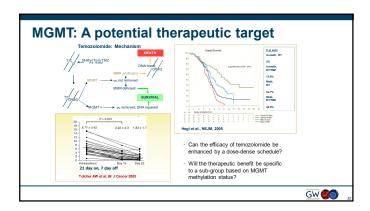


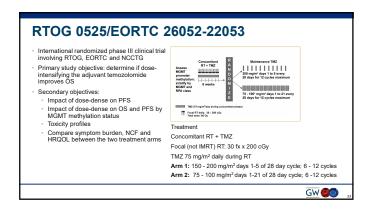

Treatment of Patients Current Standards Of Care

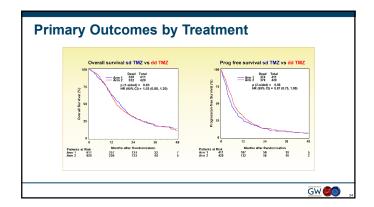

3	t Glioma	
Literature Review: text word astrocytor than 12,000 references (T. Ryken) Review and selection of papers providing data on cytoreductive surgery in newly diagnosed	5-ALA Trial (Stummer et al) • Lancet Oncology 7:392-401,	
malignant glioma Results Randomized trials - 0 Meta-analysis - 1 Critical reviews - 2 Prospective data collection - 8 Matched pair analysis - 1 Retrospective data collection - 19	2006 • Randomized trial • White light vs 5-ALA • Messured residual tumor • Compared none vs some residual • Median survival 17.9 vs 12.9 months (p < 0.001) • Factor significant in multivariate analysis • P = 0.006	The second secon

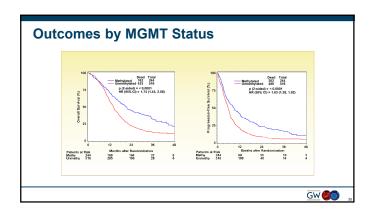

External	Beam	Ra	diotherap	y for Malignant	Glioma
3D: conformPooling of 6	nal, multip 3 randomi:	le fi zed	ields trials (RT vs no	TV + 2 - 3 cm margin RT) improved survive t RT; 9 - 12 months with	
	Author	N	Schema	Results	I
	Andersen Acta Radiol Oncol Radiat Phys Biol 1978	108	RT vs best supportive care	Post-op RT significantly improves survival compared to best supportive care	
	Walker J Neurosurg 1978	303	BCNU vs RT vs BCNU +RT, vs best supportive care	Patients receiving RT had significantly longer MS than patients receiving BCNU or best supportive care	
	Walker N Engl J Med 1980	467	Semustine vs RT vs semustine + RT vs BCNU +RT	Patients receiving RT had significantly longer survival than patients receiving semustine alone	
	Kristiansen Cancer 1981	118	RT vs RT + bleomycin vs supportive care	MS with RT alone 10.2 months compared to 5.2 months with supportive care	
"Walker MD, et al. N Engl	/ Med. 1980;303:132	3-1329.			GW 🗪


Limitations of Chemotherapy in Treating Brain Tumors Poor drug penetration into tumor (e.g., blood-brain barrier, hypoxia, intracranial pressure, etc.) Systemic toxicity Serious myelosuppression Drug-drug interactions Corticosteroids (phenytoin concentration) Anticonvulsants (paclitaxel and CPT-11 clearance) Intrinsic resistance of brain tumors MGMT overexpression, for example

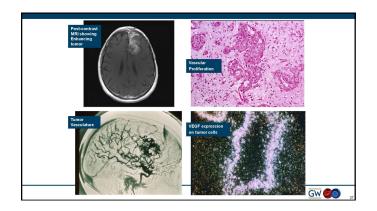


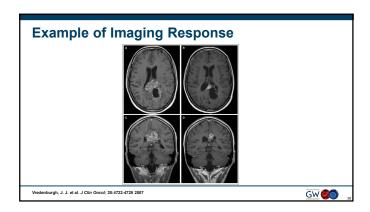


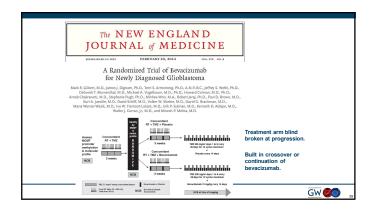


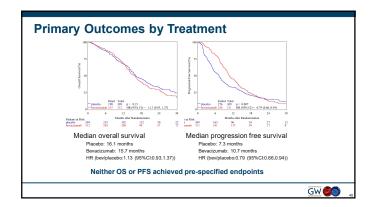


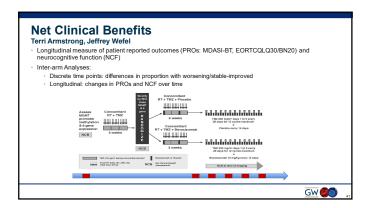
Five-year Follow Up Data							
	Treatment	RT- Unmeth	TMZ/RT- unmeth	RT meth	TMZ/RT - meth		
	Median(m)	11.8	12.7	15.3	23.4		
	2y OS(%)	1.9	14.8	23.9	48.9		
	5y OS(%)	0.0	8.3	5.2	13.8		
	Hazard Ratio	0.66 [0.	45-0.97]	0.51 [0.3	33-0.81]		
rom: Stupp et al Lance	t Oncol 10:459-66, 2010						

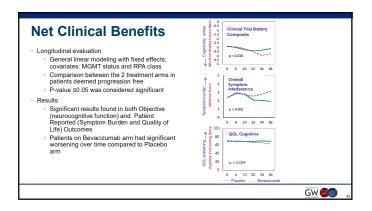


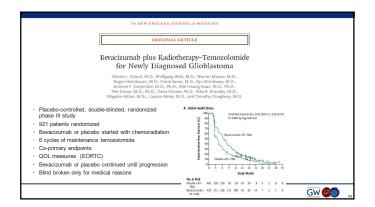


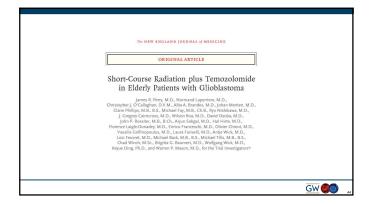


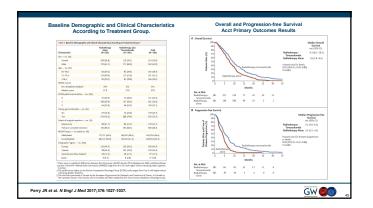


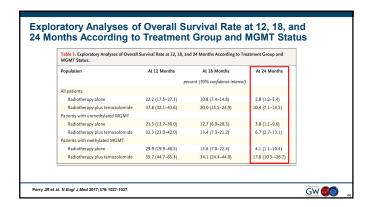

Angiogenesis Inhibitors Many of the early studies of angiogenesis used glioblastoma as the tumor model. Tumor cells make high levels of VEGF, particularly VEGF-A. VEGF production is very high in areas of necrosis, stimulating additional vascular proliferation. Newly formed blood vessels are often tortuous with blind loops and endothelial gaps Accounts for intravenous contrast leakage

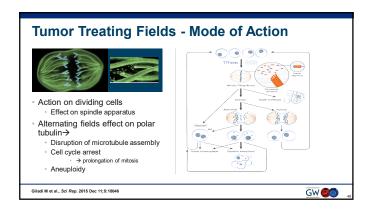


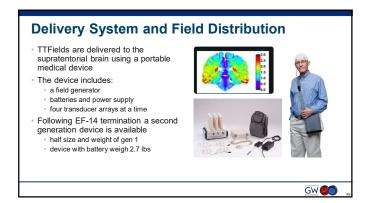


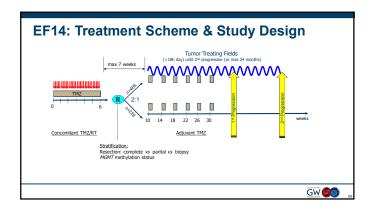


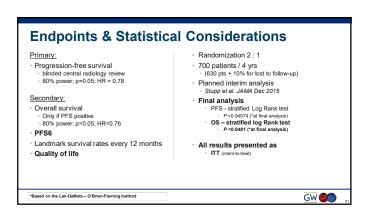




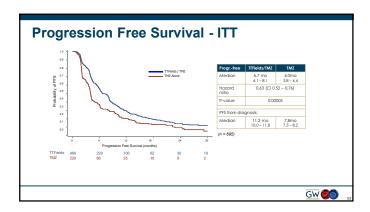


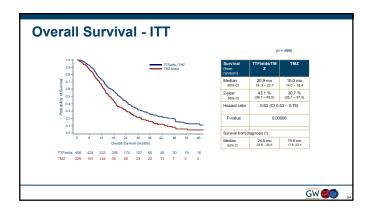


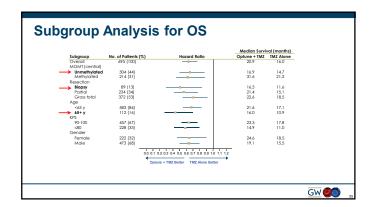


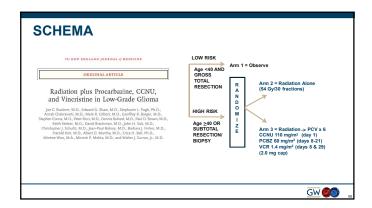


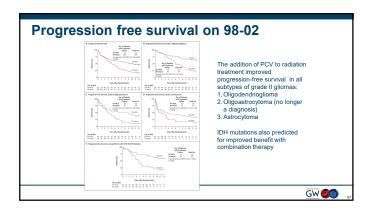
Prospective, Multi-center Phase III Trial of Tumor Treating Fields Together with Temozolomide compared to Temozolomide alone in Newly Diagnosed Glioblastoma
 Roger Stupp, Ahmed Idbaih, David M. Steinberg, William Read, Steven Toms, Gene Barnett, Garth Nicholas, Chae-Yong Kim, Karen Fink, Andrea Salmaggi, Frank Lieberman, Jay Zhu, Lynne Taylor, Giuseppe Stragliotto, Andreas F. Hottinger, Eilon D. Kirson, Uri Weinberg, Yoram Palti, Monika E. Hegi, and Zvi Ram on behalf of the EF-14 Trial investigators

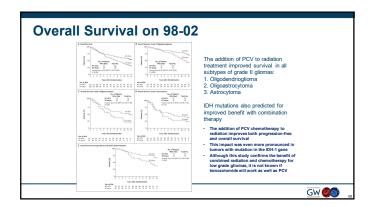


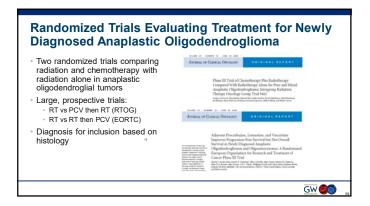


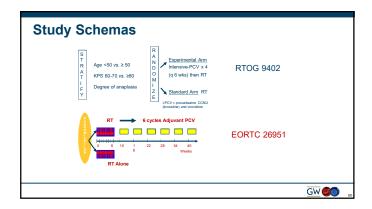


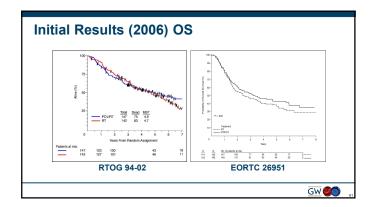


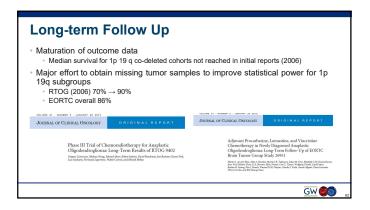

	TTField	s / TMZ	TMZ	Alone
	(N=	456)	(N=	216)
System Organ Class \ Preferred Term	Grade 3	Grade 4	Grade 3	Grade 4
Number of Patients with >=1 AE	37%	14%	36%	12%
Blood and lymphatic system disorders	9%	4%	9%	2%
Leukopenia	2%	0	<1%	0
Lymphopenia	3%	1%	3%	Ö
Neutropenia	2%	1%	1%	<1%
Thrombocytopenia	6%	3%	4%	1%
Gastrointestinal disorders	5%	<1%	3%	<1%
General disorders + administration site conditions	9%	<1%	6%	0
Asthenia	3%	0	1%	0
Fatigue	4%	0	3%	0
Gait disturbance	2%	0	1%	0
Infections and infestations	7%	<1%	4%	1%
Injury, poisoning and procedural complications	5%	0	3%	0
Fall	2%	0	1%	0
Medical device site reaction	2%†	0	0	0

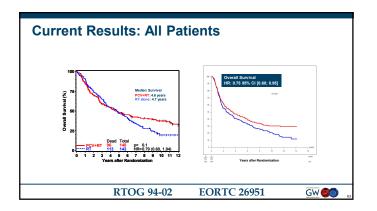


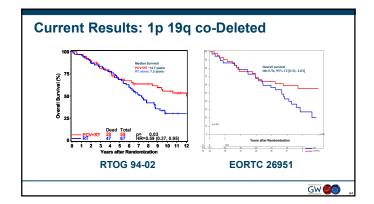


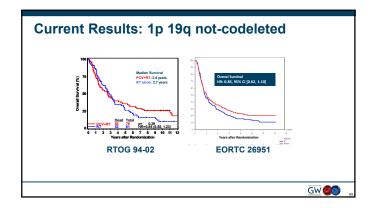


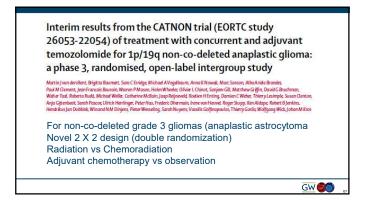


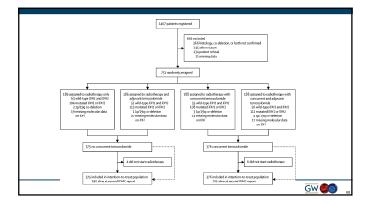


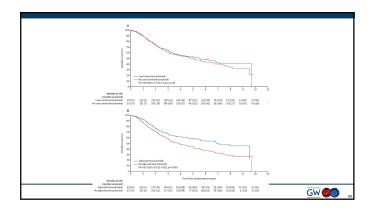


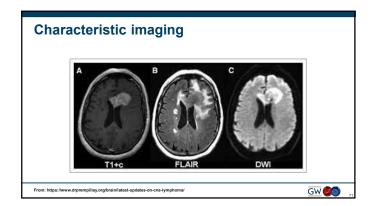




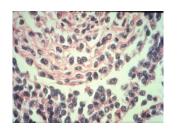







Conclusions Long term results of two cooperative group phase III trials determine radiation and chemotherapy as the new standard of care for newly diagnosed anaplastic oligodendroglioma with 1p 19q loss. Perseverance in data and tumor collection Establishes 1p 19q loss as a predictive marker in addition to a prognostic marker Underscores importance of prospective tumor collection and hypothesis-based clinical trials.

Primary Central Nervous System Lymphoma (PCNSL) Neurologic Involvement of the CNS in systemic NHL: 5-29% Focal Lesion most common presentation: others include diffuse, uveal, leptomeningeal, and intramedullary. PCNSL accounts for 1-2% of NHL · Infiltrates normal brain diffusely. Large increase in incidence for both population at risk: Spreads along CSF pathways. Immunocompetent · Rarely spreads outside the CNS. Immunocompromised Recognized subtypes: Recognized subtypes: Immunodeficiency-associated CNS lymphomas AIDS-related diffuse large B-cell lymphoma EBV-positive diffuse large B-cell lymphoma Lymphomatoid granulomatosis Primary CNS posttransplant lymphorpul Aids Organ allograft recipients Congenital GW 🎒



PCNSL: Diagnosis/Staging * Lumbar Puncture (if safe) * 80% of patients have a CSF pleocytosis * <10% have obvious lymphomatous involvement of CSF. * Surgery: diagnosis, little data to support resection * CNS Axis staging: * Spinal evaluation (MRI) * Ophthalamic Slit Lamp Examination * 10-20% of patients develop lymphomatous uveitis. * Systemic staging * Physical exam, CxR, bloods * ? Utility of BM bx, body CT scans, gallium scans

PCNSL: Histology

- Most are diffuse large B-cell lymphoma (>90%)
- Rarely Burkitt, low grade or T cell
- B cell with three molecular subgroups

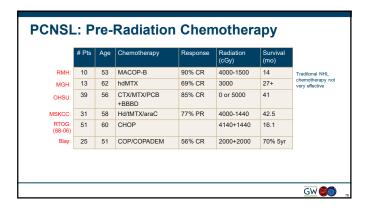
 - B-cell like
 Activated B-cell like
 - Type 3
- NfkappaB activation in B cell subtype

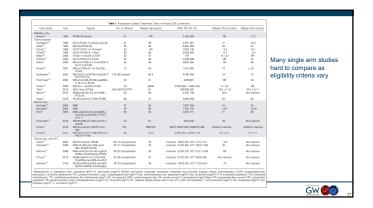
Ocular involvement

GW 🎒

Primary CNS Lymphoma Treatment

Radiotherapy


- · Historically standard Tx
- 80% radiographic CR
- Recurrence local +/- CSA
- 14-18 month median survival
- Associated with significant neurotoxicity in patients over 60


Chemotherapy

- Chemotherapy appears much more effective in non-irradiated tumors.
- Typical DNHL treatment regimens are not optimal
- BBB crossing agents (e.g. methotrexate, cytarabine, topotecan, temozolomide) seem to be best
- Rituxan also has activity.
- Glucocorticoids gives response rates up to 40%:

 - Direct lymphotoxic effect
 Can obscure diagnosis (Ghost tumor)

First author Year	Agents	No. of Patients	Median Age (years)	ORR, PR+CR (%)	Median PFS (months)	Median OS (months)
Retrospective						
Herrlinger ⁷⁰ 2000	PCV	7	67	6/7 (86)	NR	39
Arellano-Rodrigo ⁷¹ 2003	Eto+ifos+AraC	16	54	6/16 (37)	4.5	6
Wong ⁷² 2004	Ritux+temozolomide	7	64	7/7 (100)	6	8
Enting ⁷³ 2004	Ritux+temozolomide	15	69	8/15 (53)	2.2	13.6
Plotkin ⁷⁴ 2004	HD-MTX	22	58	20/22 (91)	25.8	61.9
Nguyen ⁷⁵ 2005	WBRT	27	66.8	20/27 (74)	9.7	10.9
Hottinger ¹⁶ 2007	WBRT	48	62	38/48 (79)	10	16
Makino ¹⁷ 2012	Temozolomide	17	68	8/17 (47)	1.9	6.7
Wong ⁷⁸ 2012	Temozolomide	7	58	1/7 (14)	2	4
Zhang ^{T9} 2013	Pernetrexed	30 (18 PCNSL)	67	18/30 (60)	4.1	22.6
Pentsova ⁶⁰ 2014	HD-MTX	39	66	33/39 (85)	16	41
Chamberlain ⁸¹ 2014	Bendamustine	12	61.5	6/12 (50)	3.5	5
Houillier ⁸² 2015	Lenalidomide	6	73.5	3/6 (50)	1.5	2.5
Chamberlain ⁸³ 2016	AraC	14	60	6/14 (36)	3	12
Prospective						
Fischer ⁸⁴ 2006	Topotecan	27	51	9/27 (33)	2	8.4
Reni ⁶⁶ 2007	Temozolomide	36	60	11/36 (31)	2.8	3.9
Soussain ⁸⁶ 2008	CYVE+SCT	43	52	20/40 (50)	11.6	18.3
Batchelor ⁸⁷ 2011 Baizer ⁸⁸ 2012	Ritux	12	64	5/12 (42)	1.9 (57 days)	20.9
	Pernetrexed		69.8	6/11 (55)	5.7	10.1 NR
Rubenstein ⁹⁹ 2013	IT Ritux+IT M	14 (6 PCNSL)	61	6/14 (43)	1.2	
Nayak ⁸⁹ 2013 Kortel ⁹⁰ 2016	Ritux+ternozolomide+pred	16	63 70	6/14 (36)	1.6 (7 weeks)	Not reached
Korfef ⁹⁰ 2016	Temsirolimus	37	70	20/37 (54)	2.1	3.7

PCNSL: High-Dose Methotrexate

- Most active single agent.
- Anti-tumor activity related to concentration and exposure time of drug.
- · Treating CNS disease with methotrexate gives large therapeutic window since the BBB is probably not permeable to reduced folates (leucovorin).
- Optimal dose and administration schedule for PCNSL not determined.
 - Currently bolus injection given over 2-3 hours is most commonly utilized.
 - · Most commonly utilized doses are 3-8 gms/m2 every 2-3 wks
- Various studies report response rates for single agent MTX to be 52-88% with 2 year survivals of 58-72%.
- Various studies report response rates for methotrexate in combination with other agents of 70-94% with 2 year survivals of 43-73%.

Two Active PCNSL Regimens Studied by NCI **Cooperative Groups**

RTOG 93-10

The "MSKCC Regimen"

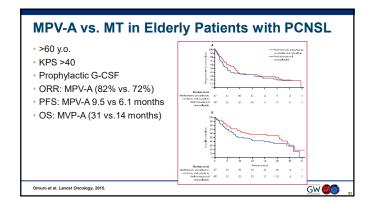
- 5 cycles MTX (2.5 gms/m2)/vincristine procarbazine/intraventricular MTX followed by whole brain XRT
- 102 patients
- Following chemotherapy: 58% CR, 36% PR
- 24 month median PFS 36.8 month median survival
- Age a significant prognostic factor (survival 50.4 months pts <60 y.o.; 21.8 months pts <60 y.o.) Significant acute treatment-related toxicity (53% grade 3 or 4)
- Significant severe delayed neurotoxicity (15%)

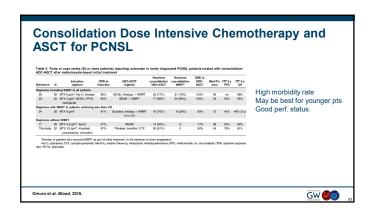
NABTT 96-07

- hdMTX (8 gms/m²) every 2 weeks until CR or a maximum of 8 cycles. XRT delayed

- 53% CR; 22% PR Median # cycles to CR was 6 12.8 months median PFS.

- 22.8+(not yet reached) months median survival 4/5 CR for intra-ocular lymphomas 2/3 LMD (+ CSF cytology) progressed in brain during MTX tx
- Significant acute treatment-related toxicity (48% grade 3 or 4)
- No delayed severe neurotoxicity




GW 🎒

The R-MVP Regimen: The Current Standard

- Multicenter phase 2 trial
- Rituximab, MTX, PCB,VCR,WBRT(either 23.4 Gy or 45 Gy) followed by Hi-DAC
- 52 pts; med. Age 60, KPS 70
- 60% CR with R-MVP
- PFS = 3.3 yrs; Overall Survival 6.6 yrs.
- Improved executive function and memory post R-MVP. Remained relatively stable long-term.

PCNSL: Unique features		
Leptomeningeal Disease 5-30% have evidence of LMD at presentation. 40-50% of patients will have pathologic evidence of PCNSL invading the subarachnoid space. Majortly of patients who relapse in the eptomeninges had evidence of LMD at presentation 90% of patients who relapse in the leptomeninges, also relapse in the brain parenchyma Does treating LMD really change the overall prognosis of patients with PCNSL?	Ophthalmologic Involvement Untreated intraocular lymphoma will ultimately lead to CNS disease in the majority of patients. XRT associated with significant long-term morbidity Blood-eye barrier possibly more formidable than BBB. Systemic hdMTX can achieve lymphotoxic concentrations of MTX in the vitreous/aqueous humor Intra-ocular injection of MTX can temporarily eradicate disease and greatly improve vision. ? No perspective suby No long-term follow-up	
	<u>GW</u> 👀 84	

Chemotherapy for PCNSL: What We Do Not Know

- The role of XRT in conjunction with
- Optimal dose and administration schedule for MTX
- Other agents add to the effectiveness of MTX
 - What agents
 What dose and administration schedule
- Role of dose intense chemotherapy (ABMT)
- Is there a role for BBBD?
- Should the presence of overt leptomeningeal and/or intraocular disease change treatment approach.
- New agents undergoing evaluation:

 - Ibrutinib
 - Buparlisib Nivolumab/pembrolizumab
 - Pemetrexed
 - Temsirolimus

PCNSL: Current Treatment Recommendations

- Most patients should receive pre-radiation chemotherapy with a regimen that at least contains high-dose methotrexate.
- Radiation therapy following chemotherapy may improve survival further; although at the risk of significant long term neurotoxicity particularly in elderly patients.
- Older (>70 y.o...?) patients should probably not receive combined modality treatment or at least not full dose WBRT.
 - Methotrexate-based regimen optimal if medically appropriate
 - · Methotrexate alone if combination not tolerable
 - XRT alone for poor KPS patients who could not tolerate chemotherapy.
- Strongly encourage enrollment on a clinical trial.

Conclusions and "Take Home" Messages

- Malignant gliomas are staged by tumor grade, not TNM
- Key molecular features such as 1p19q LOH, IDH mutational status and MGMT methylation status assist in diagnosis, prognosis and treatment
- More precise diagnoses have enabled development of standard therapies for glioblastoma and IDH mutated tumors
- Standard of care for glioblastoma remains chemoradiation with temozolomide, but ongoing trials with immunotherapies, viral therapies and novel targeted agents are underway
- Primary CNS lymphoma advances focus on combination chemotherapy regimens; ibrutinib and related agents may have a role; radiation should be delayed in older patients

Thank You		
	GW 🚳	