


#### **Disclosures**

Disclosures of Financial Relationships with Relevant Commercial Interests

2

#### **HEMOLYTIC ANEMIA**

- HEMOLYSIS: Premature or accelerated destruction of RBCs
- RBC survival: less than 100 days
- 2 main causes:
  - -Intrinsic RBC defects (inherited)
  - -Extra-corpuscular causes (acquired)

**CLASSIFICATION** 

- Hereditary Hemolytic Disorders
  - \* RBC enzymes defects
  - \* RBC membrane defects
  - \* Hemoglobinopathies
  - \* Thalassemias

3

#### **CLASSIFICATION**

- Acquired Hemolytic Disorders
  - \* Immune hemolytic anemias
  - \* Splenomegaly
  - \* Microangiopathic hemolytic anemia
  - \* PNH

5

- \* Direct toxic effect ( malaria, clostridial infections)
- \* Spur cell anemia

IMMUNE HEMOLYTIC ANEMIAS

- · Caused by:
  - WARM ANTIBODY
  - OR
  - COLD ANTIBODY

#### IMMUNE HEMOLYTIC ANEMIA

- Rare & Heterogeneous disease
- Incidence: 1 to 3 /100,000 cases per year
- Warm reactive: most common type & accounts for 70-80% of adult cases and 50 % of pediatric cases

#### IMMUNE HEMOLYTIC ANEMIAS

- Incidence increases with age with a dramatic increase after age 50
- There is an early childhood peak due to increased incidence of Paroxysmal Cold Hemoglobinuria (PCH)

7

## IMMUNE HEMOLYTIC ANEMIAS Diagnosis

- Direct Antiglobulin Test (COOMBS test) is the only test that provides definitive evidence of immune hemolysis
- Increased LDH & reduced haptoglobin: 90% specific for diagnosis
- Normal LDH & haptoglobin: 92% sensitive for lack of hemolysis

## IMMUNE HEMOLYTIC ANEMIAS Diagnosis

#### · Direct Coombs test

- -The addition of Anti-IgG/anti-C3 leads to the agglutination of washed RBCs IF they are coated with IgG or complement
- Weakly positive test occurs in 1 in 10,000 healthy donors and in 5-10% of hospitalized patients without hemolysis and is usually caused by complement

## IMMUNE HEMOLYTIC ANEMIAS Diagnosis

#### · Direct Coombs test

9

Negative test with severe immune hemolysis can occur:

- In patients with low titers of auto Ab and/or C3. Most reagents cannot detect fewer than 100-500 Ab molecules
- In patients with auto Abs that are IgA or IgM.
   These are not detected by commonly used reagents

10

# IMMUNE HEMOLYTIC ANEMIAS Diagnosis

#### Direct Coombs test

If negative test and high suspicion of immune hemolytic process, can use enzyme-linked immunoadsorbent assay (ELISA), radiolabeled anti-immunoglobulin, or specific assays for IgA

#### **DAT-negative Hemolysis**

- 3-11% of cases
- · Mild to severe life threatening
- Can be primary or secondary similar to DATpositive disease
- Delay in diagnosis & initiation of treatment may be fatal
- Same management as DAT-positive disease

## IMMUNE HEMOLYTIC ANEMIAS Diagnosis

#### Direct Coombs test

 Level of Coombs positivity does not predict degree of hemolysis

13

14

## IMMUNE HEMOLYTIC ANAMIAS Diagnosis

- Direct Coombs test
- A "complement-only" positive Coombs test (10%) in patients with:
  - Low titer of warm-reactive IgG
  - A warm or cold reactive IgM
  - Cold-reactive IgG : Donath-Landsteiner (D-L) (hemolysin)

## IMMUNE HEMOLYTIC ANEMIAS Diagnosis

#### Indirect Coombs test

- -Detects Abs in the patient's serum
- Normal ABO and Rh-compatible RBCs are incubated with the patient's serum, washed and then a direct Coombs test is performed on the incubated RBCs

15

16

# A. Direct antiglobulin (Coombs') Washed (3x's) Patient crythrocytes (sensitized in vivo) B. Indirect antiglobulin (Coombs') test Human crythrocytes (not patient's) Human crythrocytes (not patient's) Sensitized crythrocytes + Human (patient serum) IgG antibody Sensitization Visual crythrocyte (in vitro) sensitization Visual crythrocyte (in vitro) sensitization Diagram of direct and indirect antiglobulin (Coombs') test

# IMMUNE HEMOLYTIC ANEMIAS Diagnosis

#### Cold Agglutinin Assay

- Detects serum Abs which induce clumping of O  $\oplus$  RBCs in the cold
- Typically, it detects IgM cold reactive Abs

17

# IMMUNE HEMOLYTIC ANEMIAS Diagnosis

#### Cold Agglutinin Assay

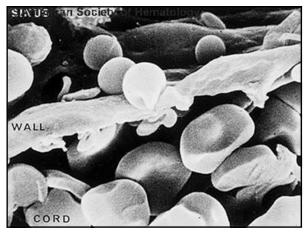
- Low titer cold agglutinins are common but do not cause complement fixation

## IMMUNE HEMOLYTIC ANEMIAS Diagnosis

#### Cold Agglutinin Assay

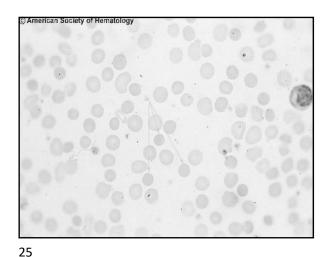
- Level of C3 coating does not correlate directly with hemolysis. Coombs reagents detect both biologically active C3b and inactive fragments (C3bi, C3d)
- Only C3b is associated with complementmediated lysis

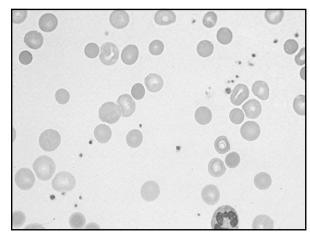
19 20


## IMMUNE HEMOLYTIC ANEMIAS Warm Antibody

- Mediated by IgG Abs that react with RBCs at body temperature (37 degree C)
- These Abs do not cause lysis or agglutination of RBCs
- Ab-coated RBCs are removed from circulation by Fc receptor-expressing macrophages in the spleen

IMMUNE HEMOLYTIC ANEMIAS
Warm Antibody


- Alteration of red cell membrane occurs when the IgG-coated RBC bind to macrophages in the spleen (partial phagocytosis), resulting in the formation of spherocytes
- Presence of C3 on RBC membrane, in addition to the Ab, behaves in a synergistic way leading to severe hemolysis


21 22



## IMMUNE HEMOLYTIC ANEMIAS Warm-Reactive

- A generalized up-regulation of the phagocytic activity of macrophages has been reported in these patients
- Lymphocytes may play a role in inducing membrane injury of the RBCs that are coated by IgG or complement





26

## IMMUNE HEMOLYTIC ANEMIAS Warm-Reactive

- Idiopathic or primary in 50% of cases
- Viral infections (in children)
- Neoplasia (NHL, CLL treated with purine analogs)
- Connective tissue disorders (SLE)
- Prior allogeneic blood transfusion/hematopoietic stem cell transplantation
- Drug-induced (rarely in children)

Methyldopa Quinidine

Penicillins/cephalosporins

27

## AIHA Purine Nucleoside Analogues

- · Fludarabine, Cladribine & Pentostatin
- AIHA reported after 1-4 courses of therapy
- Significant rate of relapse of AIHA with retreatment associated with high mortality
- Combination of Fludarabine plus cyclophosphamide and /or Rituximab protects against AIHA in CLL
- Disturbance of immunoregulatory T cells with release of a suppressed auto Ab to a native RBC Ag

28

## AIHA Allogeneic Blood Transfusion

- 8%-10 % incidence of auto Ab production (positive DAT)
- Mainly in patients with hemoglobinopathies receiving multiple transfusions
- · Native RBCs are hemolysed

#### AIHA Allogeneic HSCT

- Ab production by donor immune system against Ags on donor RBCs (autoimmune reaction of the graft against its own product)
- Incidence of 6% in pediatric population with a median onset of 4 months post transplant with high mortality
- Reported also in T-cell depleted & cord blood transplants

## AIHA Orthotopic Solid Organ Transplant

- · Related to "passenger lymphocyte syndrome"
- Risk & degree of hemolysis is proportional to the mass of transplanted lymphocytes
- · Heart-lung>liver>kidney
- · Rapid onset hemolysis with positive DAT
- Hemolysis is usually transient since transplanted lymphocytes do not proliferate or engraft
- Management: Transfusion of group O RBCs, avoidance of ABO-incompatible plasma products, maintenance of adequate renal function, & RBCs exchange

31 32

- CMV Infection
  - Autoimmune hemolysis caused by warmreactive IgG

IMMUNE HEMOLYTIC ANEMIAS

Infections

- · Influenza A Infection
  - Autoimmune hemolysis caused by high-titer complement-fixing Abs to virus-produced, RBCbound polyribosome ribosylphosphate
- HSV Infection
  - Autoantibody is IgG with Rh (anti-c) specificity

33 34

#### AIHA EVANS Syndrome

- Immune thrombocytopenia with acquired hemolytic anemia
- Can be a combination of any 2 or 3 autoimmune cytopenias
- Autoantibody formation due to defective B cell selection and maturation

# AHIA Lymphoproliferative Disorders

- Onset may precede or follow the diagnosis of a lymphoproliferative disorder (LPD)
- Incidence of LPD is ~ 18% between 9 -76 months after onset of hemolysis
- Risk factors for LPD:
  - · IgM monoclonal gammopathy
  - · advanced age
  - · underlying autoimmune disease

## AIHA Thromboembolism

- Increased risk for venous thromboembolism
- Pulmonary embolism: most common cause of death (splenectomized pts receiving corticosteroid therapy)
- · Predisposing factors:
  - HIV infection
  - Antiphospholipid antibody positivity (lupus anticoagulant)

AIHA EVANS Syndrome

- Can be a manifestation of:
  - Autoimmune lymphoproliferative syndrome
     ( ALPS)
  - Classic primary immunodeficiency (PID)
  - Other novel immune dysregulation syndrome
  - \*Diagnosis of Evans syndrome: initiate basic immunologic workup & screening for common variable immunodeficiency & ALPS

#### AIHA/ALPS

- · ALPS is caused by germline or occasionally somatic mutations in FAS, FASL or CASP10
- · Impaired FAS mediated apoptosis of activated autoreactive lymphocytes
- · In childhood, chronic ITP, AHIA
- · Lymphadenopathy, splenomegaly plus other autoimmune manifestations
- Increased risk for malignancy (lymphoma)

37 38

#### DRUG-INDUCED IMMUNE **HEMOLYTIC ANEMIA**

#### Autoimmune Type

- Induced by  $\alpha$ -methyldopa
- Positive Coombs test in 10% of patients receiving α-methyldopa
- AutoAb is IgG, similar to one seen in idiopathic AIHA, does not fix complement and is usually specific for Rh locus

#### DRUG-INDUCED IMMUNE **HEMOLYTIC ANEMIA**

#### Innocent Bystander Type

- Least common

39

- Drugs include:
  - · Quinidine, Quinine, Sulfonamides, Isoniazid, Phenacetin and Dipyrone
- Interaction of drug with the RBC membrane produces a neoantigen
- Abs are IgG or IgM
- Drug-Ab complex adheres to RBCs membrane and can fix complement

#### AHIA/ALPS

#### Treatment

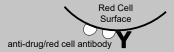
- First Line: Steroids & IVIG
  - · Splenectomy: last resort because of increased risk of fatal pneumococcal sepsis
  - · Rituximab: prolonged & severe hypogammaglobulinemia
- Second Line: Mycophenolate Mofetil (MMF) &

## DRUG-INDUCED AUTOANTIBODY GENERATION



- <u>Key concept</u>:

   Drug stimulates B cell production of anti-rbc autoantibodies
- α methyl Dopa L Dopa
- Fludarabine and Chloro-deoxyadenosine
- Procainamide
- Diclofenac


40

#### DRUG-INDUCED IMMUNE **HEMOLYTIC ANEMIA**

#### Innocent Bystander Type

- Direct Coombs is positive for C3 only, since the drug-Ab complex will dissociate from RBC
- Hemolysis can be intravascular or extravascular depending on whether Ab can fix complement or not

## DRUG-INDUCED FORMATION OF ABS AGAINST THE RBC -Hapten COMPLEX



Antibody forms ternary complex with the drug hapten and a specific red cell membrane component

#### Examples

- Quinine/Quinidine
- Stibophen
- Chlorpropamide
- Amphotericin

43 44

#### DRUG-INDUCED IMMUNE **HEMOLYTIC ANEMIA**

#### Hapten-Induced Type

- Indirect Coombs can also be positive during rx and for many weeks after discontinuation of penicillin despite that hemolysis subsides as soon as penicillin is stopped
- Indirect Coombs test should be performed using penicillin-coated RBCs

#### DRUG-INDUCED ANTIBODIES -PENICILLIN-LIKE MECHANISM

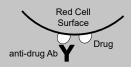
DRUG-INDUCED IMMUNE

**HEMOLYTIC ANEMIA** 

- The drug binds to the RBC membrane and

- Caused by large IV doses of penicillin or

- Direct Coombs is positive for IgG during


- Occurs 7-14 days after initiation of penicillin

Hapten-Induced Type

becomes the target antigen

penicillin-like antibiotics

penicillin administration



#### Key concept:

Drug Binding to Red cells is the critical step in targeting antibody to Red cell Membrane

#### Examples

- Penicillin and semisynthetic penicillins
- Cephalosporins Tetracycline, Streptomycin
- Tolbutamide

46

45

#### DRUG-INDUCED IMMUNE HEMOLYTIC ANEMIA

- · Ribavirin therapy of hepatitis C has been associated with hemolysis
- · Hemolysis can be managed with erythropoietin, allowing continuation of treatment

## Treatment

- · Removal of drug

- Treatment of underlying condition
- Folic acid

49

#### AIHA/ Warm-Reactive Treatment

#### · First line

- Prednisone: 1-2 mg/kg Q8-12 hours for 72 hours then decrease to 1-2 mg/kg/d
  - 60%-70% sustained response (20% CR)
  - Relapse occurs in 50% of responders either during steroid tapering or after discontinuation
- IVIG: 1g/kg/d for 2 days

#### AIHA/ Warm-Reactive Treatment

#### Second line

- Rituximab: 375 mg/m2 weekly for 4 weeks
- Splenectomy
  - 30%-40% of patients will be resistant to steroid rx or require excessive doses and/or prolonged administration
  - Splenectomy: 50%-60% response
  - Steroids in lower doses may be needed post splenectomy in 50% of cases

50

## AIHA/Warm-Reactive Treatment

#### Second line

– MMF: 600 mg/m2 BID– Sirolimus: 2 mg/m2 daily

 Danazol: 600-800 mg/d in 3-4 divided doses followed by maintenance 200-600 mg/d

## AIHA/Warm-Reactive Treatment

#### Third Line

- Azathioprine: 1-2 mg/kg/d

- 6-Mercaptopurine: 50-75 mg/m2/d

 Cyclophosphamide: 1-2 mg/kg/d PO or 300/1000mg/m2 IV every 2-4 weeks

- Cyclosporine: 5mg/kg/d

51 52

#### AIHA/Warm-Reactive Treatment

#### Fourth Line

- High Dose Cyclophosphamide: 50 mg/kg/d for 4 consecutive days followed by G-CSF
- Alemtuzumab: 3 mg IV or SC on d1, 10 mg on d2, 30 mg on d3, maintenance 10-30 mg 3 X weekly for up to 12 weeks
- Autologous or allogeneic HSCT

#### AIHA/ Warm-Reactive Treatment

#### TRANSFUSION RX

- Allo-reactive Abs are present in 32% of patients with AIHA
- Allo-reactive Abs are directed against Rh, Kell, Kidd, and Duffy
- Undetected allo-reactive Abs, rather that auto- Abs, may cause increased hemolysis after transfusion

## AIHA/ Warm-Reactive Treatment

#### TRANSFUSION RX

- Usual cross-matching is difficult because the Ab is a panagglutinin reacting with all normal donor cells
- Unlikely to find fully compatible blood

#### AIHA/ Warm-Reactive Treatment

#### TRANSFUSION RX

- Allo-reactive Abs are detected by testing the patient's serum against a panel of RBCs of known phenotypes
- The problem is that the auto Ab in the patient's serum will generally react with all RBC tested, masking the presence of an allo Ab

55 56

#### AIHA/ Warm-Reactive

#### • TRANSFUSION RX

- No patients should die because of inability to find blood for transfusion
- Most patients tolerate serologically incompatible blood

#### AIHA/ Warm-Reactive

#### • TRANSFUSION RX

- The decision to transfuse should depend on the patient's clinical status
- With appropriate precautions, survival of transfused RBC is as good as survival of the patient's own RBC
- Transfusion causes temporary benefit

57 58

## Posttransfusion Hemoglobinemia & Hemoglobinuria

Result from increase in the total RBC mass available for destruction and NOT secondary to increased rate of hemolysis or alloAb- induced hemolysis

## Posttransfusion Hemogloninemia & Hemoglobinuria

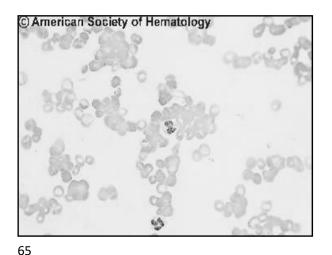
- Excessive & rapid transfusion of RBC should be avoided
- Transfusion of modest volumes of RBC just sufficient to maintain a tolerable Hgb/Ht

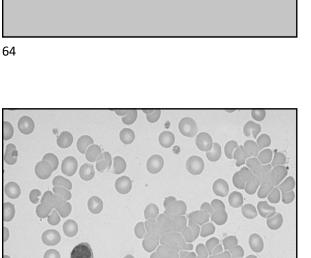
#### Cold Agglutinin disease (CAD)

#### Primary CAD

- clonal B cell lymphoproliferative disorder called primary cold agglutinin-associated lymphoproliferative disease
- Distinct from lymphoplasmacytic lymphoma, marginal zone lymphoma, and other low grade lymhoproliferative disorders

#### Secondary CAD


- Aggressive lymphomas
- Hodgkin's lymphoma
- Carcinomas
- Infectious conditions


61

#### Cold Agglutinin Disease

- · Warming leads to quick disagglutination
- Low titers (<1:32) of this Ab can be found in normal serum with no clinical consequences
- In patients with disease, Ab titer is >1:1,000 at 4°C and 1:16 at 37°C
- · Hemolysis is intravascular

63





66

62

#### **Cold Agglutinin Disease**

- Caused by IgM complement-fixing Ab
- Most common cold agglutinins are anti-l
- Ab binds to RBCs and causes agglutination at low temperatures (4°C)

**Cold Agglutinin Disease** 

• Direct antiglobulin test detects C<sub>3</sub> since the

Only red cells coated with C<sub>3</sub>b are removed

• Red cells coated with C<sub>3</sub>d are not removed from the circulation and are protected from

complement-mediated hemolysis because

C<sub>3</sub>d limits the sites available for C<sub>3</sub>b activation

from the circulation by macrophages in liver

bound IgM is released at 37°C

#### **Cold Agglutinin Disease**

#### MYCOPLASMA PNEUMONIA

- Cold agglutinins are commonly detected
- Only a very small number of patients develop hemolysis
- The Ab is IgM & is directed against the I antigen
- Hemolysis usually occurs 5 to 10 days after recovery from infection and is selflimited

#### Cold Agglutinin Disease

- MYCOPLASMA PNEUMONIA
- Cold agglutinin titers are usually > 1:256
- Direct Coombs (+) for complement only

67 68

#### Cold Agglutinin Disease

#### • INFECTIOUS MONONUCLEOSIS

- Hemolysis is rare
- The Ab is an IgM directed against the i antigen expressed on fetal and not adult RBCs
- *i* antigen is also expressed on red cells of some patients with infectious mononucleosis
- Hemolysis results from cold agglutination of red cells or complement fixation by IgM

#### **Cold Agglutinin Disease**

#### CHRONIC COLD AGGLUTININ SYNDROME

- Age >60
- Due to a "benign" monoclonal IgM
- Antibody is anti-I bearing kappa light chains
- · Indolent for many years
- In 5-10% of cases, malignant clone arises expressing the cold agglutinin

69 70

## **Cold Agglutinin Disease**

#### LYMPHOPROLIFERATIVE DISORDERS

- In pts with cold-reactive hemolysis, trisomy 3 has been associated with progression to a lymphoproliferative disorder
- Antibody is anti-I with indolent lymphomas
- Antibody is anti-i with high grade lymphomas
- Detection of anti-i Ab in the absence of a viral infection, may indicate the presence of a lymphoma

Secondary Cold Agglutinin Disease Treatment

Treat the Underlying disorder

#### Cold Agglutinin Disease

#### TREATMENT

- · Avoid cold exposure
- · Folic acid
- Corticosteroids: not effective except in IgG cold-reactive Ab, or if a concurrent warm reactive IgG is present
- · Splenectomy: not indicated

#### Primary Cold Agglutinin Disease

#### TREATMENT

- Rituximab: first line treatment with median duration of remission of 1 year in 50% of cases.
- Alpha-interferon: may play a role . Beneficial in combination with Rituximab
- Fludarabine + Rituximab : 75% response (median duration 5 years). More toxicity
- Bendamustine+ Rituximab & Bortezomib-based therapy
- · Plasmapheresis: Effective, but of temporary value
- · IV Ig: Not indicated

73 74

#### Cold Agglutinin Disease

#### Special Precautions

75

- All patients needing hypothermic surgery should be tested for cold agglutinins
- Use of cooling blankets to reduce fever may worsen hemolysis and cause peripheral gangrene
- Washed RBCs transfusion should be used, since worsening hemolysis can occur if a complement-depleted patient receives plasmacontaining blood products
- Use of warm intravenous solutions

## IMMUNE HEMOLYTIC ANEMIAS Cold-Reactive

#### Paroxysmal Cold Hemoglobinuria (PCH)

- Rare disorder

76

- Used to be seen in association with tertiary syphilis
- In children, it follows a viral infection. Ab appears 7-10 days after onset of illness and persists for 6-12 weeks
- May follow other infections (Mycoplasma & Klebsiella pneumonias) and vaccination for measles

## IMMUNE HEMOLYTIC ANEMIAS Cold-Reactive

#### Paroxysmal Cold Hemoglobinuria (PCH)

- Antibody is a polyclonal cold reactive IgG (Donath-Landsteiner) directed against the P antigen
- P antigen is also the receptor for *parvovirus* B19 suggesting a relationship
- Ab does not cause much agglutination but can fix complement
- Red cell destruction is by complement-mediated lysis upon cold exposure

IMMUNE HEMOLYTIC ANEMIAS
Cold-Reactive

- Paroxysmal Cold Hemoglobinuria (PCH)
  - Adult form is usually chronic lasting several years
  - May occur in association with other immune disorders
  - Rarely associated with lymphoproliferative disorders

## IMMUNE HEMOLYTIC ANEMIAS Cold-Reactive

- Paroxysmal Cold Hemoglobinuria(PCH)
  - Treatment:
    - Usually self-limited in children
    - · Maintain warm environment
    - Prednisone, cyclophosphamide, azathioprine in chronic PCH
    - Splenectomy & IVIG of no value
    - Rituximab has been used

#### TRANSFUSION RX IN COLD-REACTIVE AIHA

- Compatibility testing should be performed at 37 C since autoAb does not react at this temperature but an alloAb, if present, will react
- Transfusion of warm blood is advisable despite lack of proven efficacy of this approach

79 80

|                                 | Secondary AIHA                            |                |                |
|---------------------------------|-------------------------------------------|----------------|----------------|
| Underlying disease or condition | Prevalence of AIHA, %                     | WAIHA          | CAIHA          |
| CLL                             | 2.3 - 4.3                                 | 87%            | 7%             |
| NHL (except CLL)                | 2.6                                       | More<br>common | Less<br>common |
| IgM gammopathy                  | 1.1                                       | No             | All            |
| Hodgkin lymphoma                | 0.19 - 1.7                                | Almost all     | Rare           |
| Solid tumors                    | Very rare                                 | 2/3            | 1/3            |
| Ovarian dermoid cyst            | Very rare                                 | All            | No             |
| SLE                             | 6.1                                       | Almost all     | Rare           |
| Ulcerative colitis              | 1.7                                       | All            | No             |
| CVID                            | 5.5                                       | All            | No             |
| ALPD                            | 50                                        | All            | No             |
| After allogeneic SCT            | 4.4                                       | Yes            | Yes            |
| After organ transplantation     | 5.6 (pancreas)                            | Yes            | No             |
| Drug-induced in CLL             | 2.9 - 10.5                                | Almost all     | Rare           |
| Interferon α                    | Incidence: 11.5/100,000 patient-<br>years | All            | 0              |

81

| Treatment of WAIHA and CAIHA      |                                                                           |                                                      |                                                  |
|-----------------------------------|---------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|
| Disease or condition              | First-line                                                                | Second-line                                          | Third-line                                       |
| Primary AIHA                      | Steroids                                                                  | Splenectomy rituximab                                | Azathioprine, MMF, cyclosporin, cyclophosphamide |
| B- and T-cell NHL                 | Steroids                                                                  | Chemotherapy ±<br>rituximab<br>(splenectomy in SMZL) |                                                  |
| Hodgkin lymphoma                  | Steroids                                                                  | Chemotherapy<br>(radiotherapy)                       |                                                  |
| Solid tumors                      | Steroids, surgery                                                         |                                                      |                                                  |
| Ovarian dermoid cyst              | Oophorectomy                                                              |                                                      |                                                  |
| SLE                               | Steroids                                                                  | Azathioprine                                         | MMF                                              |
| Ulcerative colitis                | Steroids                                                                  | Azathioprine                                         |                                                  |
| CVID                              | Steroids + IgG                                                            | Splenectomy                                          |                                                  |
| ALPD                              | Steroids                                                                  | MMF                                                  | Sirolimus                                        |
| Allogeneic SCT                    | Steroids                                                                  | Rituximab                                            | Splenectomy, T-cell infusion                     |
| Organ transplantation (pancreas)  | Discontinuation of immune<br>suppression, steroids                        | Splenectomy                                          |                                                  |
| Interferon a                      | Withdrawal                                                                | Steroids                                             |                                                  |
| Primary CAD                       | Protection from cold<br>exposure                                          | Rituximab, chlorambucil                              |                                                  |
| Paroxysmal cold<br>hemoglobinuria | Supportive treatment                                                      | Rituximab                                            |                                                  |
|                                   | NHL, non-Hodgkin lymphoma; SMZL, sp., common variable immunodeficiency; A |                                                      |                                                  |

82

| Condition                                                            | First-line                                | Second-line |
|----------------------------------------------------------------------|-------------------------------------------|-------------|
| Untreated drug-related AIHA,<br>untreated AIHA in early stage<br>CLL | Steroids                                  | RCD         |
| Untreated AIHA in active CLL                                         | Steroids + chlorambucil                   | RCD; R-CVP  |
| Steroid-refractory AIHA, non-<br>progressive CLL                     | Rituximab;<br>cyclosporin;<br>splenectomy | RCD; R-CVP  |
| Refractory AIHA, advanced or progressive CLL                         | Alemtuzumab                               |             |

| c Receptor mediated Yes    | No  |
|----------------------------|-----|
| Complement mediated Yes    | Yes |
| Cold-reaction dependent No | Yes |

## MECHANISMS OF ACTION OF CORTICOSTEROIDS

- Reduce production of IgG
- May down-regulate Fc receptors (in high doses)
- Do not affect IgM production

| MMUNE HEMOL<br>THEF        |     | N⊏IVII <i>P</i> |
|----------------------------|-----|-----------------|
|                            | IgG | IgM             |
| Reduction in Ab production |     |                 |
| Corticosteroids            | Yes | No              |
| Cytotoxic agents           | Yes | Yes             |
| Reduction in available Ab  |     |                 |
| Plasmapheresis             | No  | Yes             |
| Reduction in destruction   |     |                 |
| Splenectomy                | Yes | No              |
| IV Ig                      | Yes | No              |
| Warm environment           | No  | Yes             |

85 86

| Characteristics of Anti-RBC |
|-----------------------------|
| Antibodies                  |
|                             |

|                                 | Idiopathic<br>AIHA | Chronic cold<br>agglutinin<br>disease | Mycoplasma-<br>associated<br>cold<br>agglutinin<br>disease | EBV-<br>associated<br>cold<br>agglutinin<br>disease | PCH  |
|---------------------------------|--------------------|---------------------------------------|------------------------------------------------------------|-----------------------------------------------------|------|
| Class of Antibody               | IgG most<br>common | IgM                                   | IgM                                                        | IgM                                                 | IgG  |
| Temp. for<br>Reactivity         | Warm               | Cold                                  | Cold                                                       | Cold                                                | Cold |
| Red Cell Antigen<br>Specificity | Rh-Ag              | I-Ag                                  | I-Ag                                                       | i-Ag                                                | P-Ag |
| Coombs Test for<br>IgG          | + or rarely -      | -                                     | -                                                          | =                                                   | -    |
| Coombs Test for C <sub>3</sub>  | + or -             | Usually +                             | +                                                          | +                                                   | +    |

| Intravascular vs. Extravascular<br>Hemolysis              |                                                                      |                                                                       |  |
|-----------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|--|
|                                                           | Intravascular Hemolysis                                              | Extravascular Hemolysis                                               |  |
| Pathophysiology                                           | Complement-mediated lysis                                            | Fc or C <sub>3</sub> b receptor mediated phagocytosis                 |  |
| Clinical symptoms of acute<br>hemolysis (fever, backache) | YES                                                                  | NO                                                                    |  |
| Spherocytes                                               | (-)                                                                  | (+)                                                                   |  |
| Bilirubin                                                 | Indirect > Direct                                                    | Direct > > Indirect                                                   |  |
| LDH                                                       | (+)                                                                  | (+)/(-)                                                               |  |
| Coombs Test                                               | (+)C3, (+/-) IgG                                                     | (+/-) IgG, (+)C3                                                      |  |
| Hemoglobinuria and<br>hemosiderinuria                     | YES                                                                  | NO                                                                    |  |
| Clincial Association                                      | D-L Hemolysin<br>Cold Agglutinins<br>Drug-related hemolysis: Quinine | Warm reactive IgG-mediated<br>AIHA, drug-mediated<br>immune hemolysis |  |