
Speaker: David Gilbert, MD

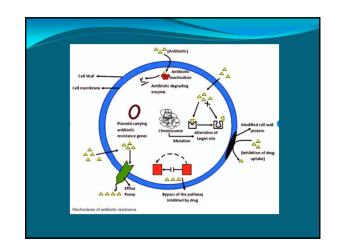
Disclosures of Financial Relationships with Relevant Commercial Interests

- · Consultant: Biomerieux
- Research Grant on Diagnostics: Biofire

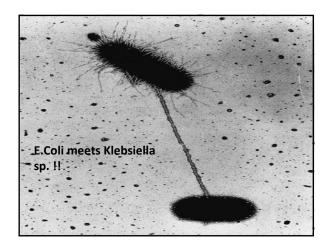
Overview • First Lecture: Beta-lactams, FQs, AGs, Metronidazole • Then , ARQs focused on clinical application • A second on line lecture on to finish antibacterials used for infections due to Gram-negative bacteria: Polymyxins, Nitrofurantoin, Fosfomycin, Tetracyclines, TMP/SMX • Dr. Boucher will discuss antibiotics primarily active vs Gram-Positive bacteria

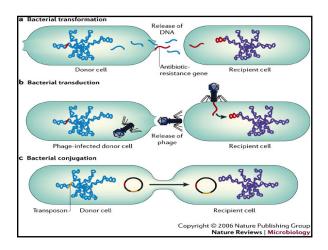
Major Gene-Expressed Mechanisms of Resistance to Antibacterials

• Enzymatic inactivation


• Target site absent: intrinsic resistance

• Target site modification or protection (high level of resistance)


• Excessive binding sites


• Altered cell wall permeability

• Drug efflux (low level resistance)

Speaker: David Gilbert, MD

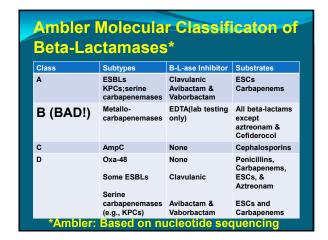
Combination vs Mono-Antibacterial Therapy

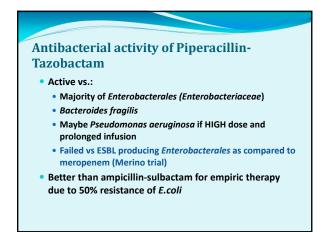
- Combination therapy:
 - Decreases risk of selection of resistant subpopulations
 - Empirically in patient at risk of MDR GNB infection;
 - Increases likelihood of at least one active drug
 - Required for efficacy: e.g. Enterococcal Infective Endocarditis; M.tbc.
 - Adjunctive:
 - Addition of clindamycin for toxic shock
 - Addition of rifamycin for penetration of biofilms on prostheses

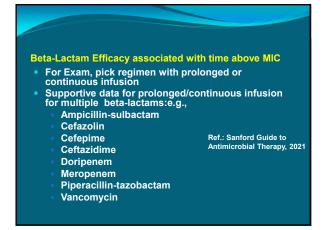
If choice of treatment is based on comparative risk of adverse effect between a beta lactam and Other antibiotic classes active vs Aerobic GNBs, The best answer is usually the

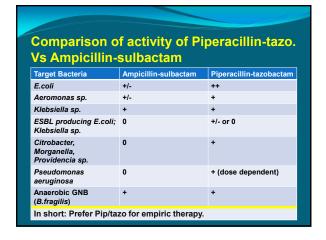
Beta-Lactams

- Penicillins
- Cephalosporins
- Carbapenems
- Monobactams (e.g., Aztreonam)
- Share: presence of a beta-lactam ring, potential for causing seizures, and allergenicity

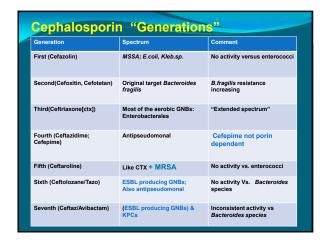

To survive bacteria are constantly mutating

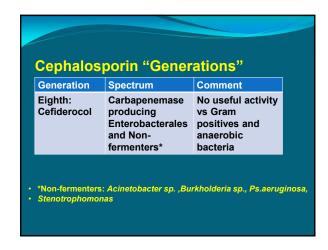

- More than 2800 beta-lactamases reported
- Promiscuity is rampant among bacteria
- Not unusual to detect other mechanisms of resistance:
 - e.g., Target change &/or Target Protection
 - Active efflux pumps


BETA-Lactam!


- Decrease in permeability
- Phenotypic antibiotic suscept. Testing does not identify specific mechanism(s) of resistance
- IF patient fails clinically and/or failure to eradicate pathogen, whole genome sequencing can identify specific mechanisms
- NO surprise, hard to write "resistance " test questions

Speaker: David Gilbert, MD

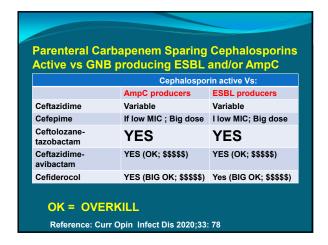




Ampicillin-Sulbactam Use as a source of sulbactam in combination therapy of MDR Acinetobacter • Dose for sulbactam component for Acinetobacter*: 4 hr IV infusion of 9 gm of Amp-Sulb (6 gm Amp +3 gm Sulb) q8h European J of Pharm. Sci. 2019; 136:104940

Piperacillin-tazobactam: AEs Common to All beta-lactams: Allergy, seizures, neutropenia, thrombocytopenia Drug-drug interactions: Rare Pip-tazo AE issues: Sodium overload--36-90 meq of sodium in a full daily dose; can aggravate CHF management Pseudo-enhancement of vancomycininduced nephrotoxicity

Speaker: David Gilbert, MD

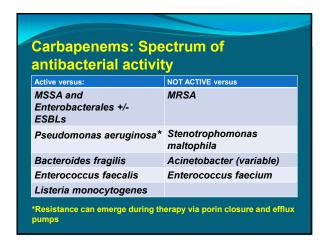

What you need to know about GNB producing ESBLs:

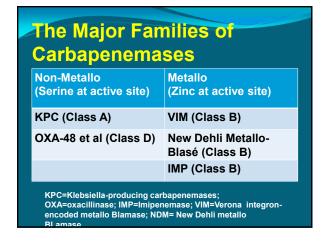
Phenotypic Detection by micro. lab based on:
In vitro "R" to penicillin, cefazolin, ceftriaxone, ceftazidime, azreonam (see Dr. Patel's lecture)

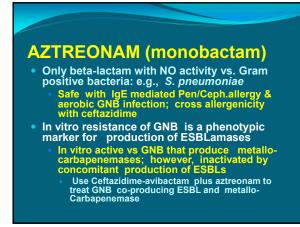
Partial reversal of "R" by BLIs (Clav/Tazo)
Similar Resistance Pattern Could be due to:(Decreased permeation + Efflux pump) or AmpC production

Preferred therapy: Meropenem
Alternative: Ceftolozane-tazobactam, Cefepime (if low MIC)
Others: Plazomicin, FQs +/-, Polymyxins
Avoid Piperacillin-tazobactam

If I say Amp C, you think:All cephs destroyed except ceftolozane-tazobactam or ceftazidime/avibactam. Bacteria with Amp C Genes come 2 ways: On plasmid; constitutive Inducible • Escherichia coli M: Morganella Y: Yersinia Klebsiella species S: Serratia Treatment: Carbapenem. Maybe Pseudo/Proteus/Provid. A: Aeromonas/Acinetobact. Beware of cefepime with MIC of 4 -8.
AAC 2015;59:7558 C: Citrobacter E: Enterobacter species (19%) Microlab cannot detect unless induced by

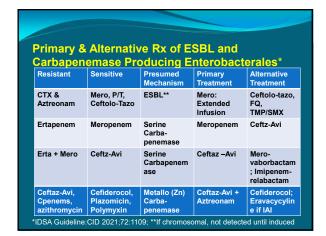

Oral Carbapenem-Sparing Antibiotics for ESBL Producing Bacteria Causing Cystitis

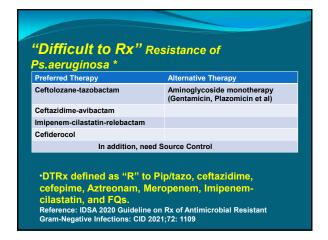

• Fosfomycin
• Amoxicillin-clavulanate
• Nitrofurantoin


Speaker: David Gilbert, MD

Testable Cephalosporin AEs Cross Allergenicity: Ceftazidime and Aztreonam have same side chain Ceftriaxone: Crystals in Biliary tree (Pseudo-cholelithiasis) Cefepime: Non-convulsive status epilepticus No Drug-Drug interactions

Carbapenem Family				
Carbapenem	Comment(s)			
Imipenem-cilastatin	Avoid in meningitis patients: seizure potential			
Meropenem	Less potential for inducing seizures			
Ertapenem	Not active vs <i>Ps.aeruginosa</i> ; Once daily therapy			
Doripenem	mortality vs Imipenem in VAP trial			
Meropenem-vaborbactam and Imipenem-cilastatin- relebactam	Active vs Klebsiella producing carbapenemases (KPCs); Not active vs metallo or Oxa 48 carbapenemases			




Beta-Lactam Treatment of Carbapenemase Producing GNBs Class A (KPCs-Klebsiella-Producing Carbapenemases): Ceftazidime-avibactam Meropenem-vaborbactam; Imipenem-cilistatin-relebactam Cefiderocol Class B (Metallo-carbapenemases): Ceftazidime-avibactam + Aztreonam Cefiderocol Class D (OXA-type) carbapenemases (heterogeneous and low level enzymatic hydrolysis) May be susceptible to ceftazidime and cefepime Ceftazidime -avibactam. Interest in combination therapy Not currently testable!

Speaker: David Gilbert, MD

Ceficerocol • First cephalosporin stable in presence of GNB producing metallo-beta-lactamases • "For complicated UTI due to susceptible GNB with no other treatment options" • Spectrum of activity includes: • XDR Enterobacterales • XDR Non-fermenters (Steno, Pseudo, Acinto) • No activity vs gram + bacteria or anaerobic bacteria

Aztreonam Activity vs Carbapenemase-Producing GNB		
Active versus:	NOT active versus:	
Metallo- Carbapenemases (Gp B)	Klebsiella-producing Carbapenemases (KPCs)(Gps A & D)	
Enterobacterales(if no ESBLs)	ESBL producers	
Pseudomonas aeruginosa	Acinetobacter; Stenotrophomonas	

IN SUMMARY: Rx

- ESBL production: Meropenem
- AmpC induced production risk: Avoid cephalosporins; Meropenem
- Serine-based Carbapenemase: Ceftazidime –avibactam, Meropenemvaborbactam, or Imipenem-cilastatinrelebactam
- Metallo-based carbapenemase production: Ceftazidime-avi + Aztreonam

PK/PD

- Concentration-dependent killing and long persistent (post-antibiotic) effect ?
 - AGs, daptomycin, FQs, telithro
- Killing dependent on time above MIC, no persistent effect?
 - Penicillins, cephalosporins, aztreonam, and carbapenems
- Killing depends on time above MIC and a persistent effect?
 - Vanco., macrolides, tetra, linezolid, clinda

Speaker: David Gilbert, MD

Fluoroquinolones (FQs)

- Family: Ciprofloxacin, Levofloxacin, Moxifloxacin, Delafloxacin
- The GOOD: Broad Spectrum of Activity, Large volume of distribution, High oral bioavailability
- The BAD: Increasing "R", Serious AEs(C.diff.) Many Drug-Drug interactions; FDA Safety Warning.
- Conclusions:
 - Uncomplicated infections(bronchitis)---AVOID
 - Severe infections---RISK vs Benefit

FQ Pharmacology

- Parenteral:
 - Higher doses for Ps.aeruginoa
 - Excreted in urine
 - High concentrations in prostate
- Oral:
 - Bioavailability of 59-95%
 - Chelation by divalent cations decreasing bioavailibility:
 - Calcium
 - Iron
 - Zinc, Magnesium, Aluminum

Preferred FQs vs: ?

- For aerobic GNB: Ciprofloxacin
- For Pseudomonas aeruginosa: Ciprofloxacin
- For respiratory pathogens: Levofloxacin, delafloxacin, and Moxifloxacin
- For Anaerobic bacteria: Moxifloxacin
- For Mycobacteria: Moxifloxacin
- For MRSA: Delafloxacin

Resistance ("R") to

FQs

- Antibacterial due to blockade of DNA replication via binding to DNA Gyrase and Topoisomerase enzymes
- Multiple mech. Of "R":
 - Mutations of enzyme targets
 - Efflux pumps, altered cell wall permeation
 - Target protective proteins, drug acetylation
- Concomitant "R" of GNB to beta-lactams via:
 - Production of ESBLs
 - Production of Carbapenemases

FQs and Clostridioides difficile

- Most common drug class to cause C.difficile
- Second are the cephalosporins
- Third is clindamycin

FQs and Acute Liver Injury

- Compared to clarithromycin, increased risk for acute liver injury within 30 days of prescription use of moxifloxacin or levofloxacin (ORs 2.2 and 1.85)
- No increased risk after use of ciprofloxacin

Speaker: David Gilbert, MD

FQs and Neurologic AEs

- Altered mental status
- Peripheral neuropathy
- Seizure
- Pseudotumor cerebri
- Exacerbation of myasthenia gravis

QTc Prolongation: Potential Risk with all FQs except Delafloxacin

- >500 msec. or > 60 msec prolongation from baseline increases risk of torsades de pointes & ventricular fibrillation.
- Low serum K and/or Mg; Concomitant drugs increase risk: e.g., mefloquine, haldol, fosphenytoin.
- None of FQs are high risk used alone; problem: concomitant drugs (cytochrome P-450 inhibition), electrolyte abnormalities.
- Moxifloxacin: Highest association; Delafloxacin the lowest.

FQ Drug-Drug Interactions

- Cipro inhibition of cytochrome P450 resulting in impaired drug elimination
- NSAIDs plus FQs displace GABA from its receptors: Lowers seizure threshold
- Rifampin and rifapentine lower serum level of moxifloxacin; of import for combined therapy of Mycobacteria

FQs and Chelation-Related AEs

- Aortic aneurysm and aortic dissection
- Tendinopathy (Tendon rupture)
 - OR 8.3 if over age 60 and
 - OR 9.1 if using oral steroid
- Arthropathy

Aminoglycoside Family

- Amikacin
- Gentamicin
- Streptomycin
- Plazomicin
- Tobramycin

AG: Spectrum of Activity

- Active vs.
 - Aerobic gram-negative bacteria
 - Typical and atypical mycobacteria
 - Variable: Ps.aeruginosa, S. aureus X 24 hrs
- No activity vs.:
 - Gram-positive cocci: e.g., S.pneumoniae
 - Anaerobic bacteria
 - Non-fermenters: Acinetobacter sp., Stenotrophomonas maltophilia
- Often part of combination therapy
- Monotherapy vs Tularemia and Plague

Speaker: David Gilbert, MD

AG: Mech. of Action & "R" Binds to 30s ribosome; Concentration-dependent Bactericidal activity Multiple mechanisms of resistance: Most Frequent Enzymatic alteration of drug: adenyl., acetyl., phosporyl. Plazomicin not susceptible to enzymatic attack Methylation of ribosomal binding site Less Common Efflux pump Porin closure Bacteria "R" to beta-lactams & FQs often have concomitant "R" to AGs

AG: Pharmacology

- Basis of once daily dosing:
 - Concentration dependent cidal activity
 - Long post-antibiotic effect
- Result is improved antibacterial activity and less risk of toxicity
- EXCEPTION: Combination therapy of enterococcal endocarditis with TID AG therapy

AG: Shared Adverse Effects

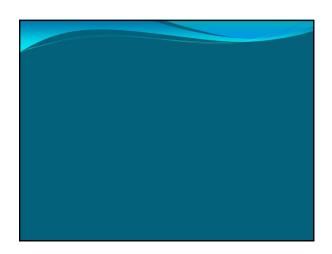
- Nephrotoxicity: Acute tubular necrosis
- Ototoxicity:
 - Cochlear (genetic predisposition & nonreversible)
 - Vestibular (irreversible but host can compensate)
- Neuromuscular blockade (neomycin)

Metronidazole

- Antibacterial and anti-protozoan activity requires a strict anaerobic environment
- "Gold Standard" for treatment of Bacteroides species
 - Other Drugs active vs B.fragilis: Pip/tazo, Amp/sulb, and Carbapenems
- Other clinical Indications: Bacterial vaginosis, Amebiasis, Giardiasis, and Trichomonas vaginitis, part of combo therapy of H.pylori
- Metro. "R" Anaerobes: P. (Cutibacterium) acnes, Peptostreptococci, Eikenella and Actinomyces

Metronidazole: Adverse Effects

- Metallic taste; "furry" tongue
- Disulfiram (Antabuse) reaction (N/V, flushing, tachycardia, dyspnea) after alcohol use
- Prolonged use: peripheral, autonomic, and/or optic neuropathy
- Aseptic meningitis
- After 3 weeks: confusion and cerebellar dysfunction


is the patient's encepalopathy due to your antibiotic therapy?

Antibiotic	Time to onset	Syndrome
Beta-Lactams	Within days *	Seizures; abnormal EEG
FQs, Macrolides	Within days	Delusions/Hallucination; normal MRI
Metronidazole	Weeks	Cerebellar dysfunction with abnormal MRI

* High serum concentrations due to renal insufficiency Reference: Neurology 2016; 86:963

Speaker: David Gilbert, MD

What do you need to know?

- In the USA there are roughly 210 FDAapproved antibacterials
- As of 2020, there are 43 anti-bacterials in the clinical development pipeline*
- What do you need to know for the certifying examination?
 - * WHO;2021. License: CC BY-NC-SA 3.0 | GO

What do you need to know?

- Major mechanisms of antibacterial activity
- Spectrum of antibacterial activity
- Mechanisms and "language" of antibacterial resistance
- Drug Pharmacology: PK/PD, Distribution, Drug-drug interactions, Excretion, Unique toxicities (Allergy lecture to follow)
- Pertinent Clinical Microbiology (see Dr. Patel's lecture): Phenotypic patterns of resistance to betalactams
- Useful acronyms: SPACE-M, KPCs, NDM-CP, PEACHES

How do bacteria acquire genes that control resistance mechanisms?

- Transduction via bacteriophages (bacterial viruses): species specific
- Transformation: scavenge and incorporate naked DNA of dead bacteria
- Conjugation: cytoplasmic bridges between species with transfer of plasmids
- Spontaneous mutations

What is a plasmid?

- Extra chromosomal circular DNA
- Can replicate independent of chromosomal DNA
- Replication can be constitutive or induced
- Exchanged between species by conjugation
- Can carry genes for multiple antibacterial resistance determinants and virulence factors

Speaker: David Gilbert, MD

What is a transposon?

- Mobile short stretch of DNA
- Can move between different points within a genome by a process termed transposition.
- Not capable of self-replication

What is an integron?

- Collects genes from transposons and forms chunks of DNA called cassettes
- Integrons allow transposons/cassettes to move from chromosome to plasmid DNA.
- Then the plasmid DNA can spread via conjugation from one genus to another.
- Mobile genetic elements= plasmids, transposons, integrons

Conjugative Plasmids

- Increasingly common
- Carry multiple resistance genes expressed in vitro as resistance to beta-lactams, FQs,
 Aminoglycosides, other drugs.

Beta-Lactam - Beta-Lactamase Inhibitor (BLI) Combinations

- The six current BLIs are: Clavulanic acid, Tazobactam, Sulbactam, Avibactam, Relebactam, and Sulbactam
 Not All are beta-lactams.
- BLIs demonstrate irreversible ("suicide") binding to
- To date, there are 3 BLIs combined with a penicillin, 1 combined with a cephalosporin, and 2 combined with a carbapenem.
- Sulbactam is the only BLI with clinically useful antibacterial activity: active vs. Acinetobacter sp.

MERINO Trial: P/T vs Mero for *E.coli, K.pneumoniae* ESBL Producers

- Design: PRDB.* 72 hrs from pos.culture to enroll; 30 minute infusions of Pip/tazo.
- 30 day all cause mortality:
 - Piperacillin-tazobactam: 12.3 %
 - Meropenem: 3.7 %
- Issues:
 - Breakpoints/inoculum effect for P/T
 - Co-production of ESBL and oxacillinase
- Three confirmatory controlled trials in progress
- * PRDB=Prospective Randomized Double-Blind

Summary: Vanco:P/T as of 2020

- Vancomycin is potentially nephrotoxic
- Piperacillin-tazobactam alone has a very low potential to cause nephrotoxicity
- The reported increased ACUTE KIDNEY INJURY with V + P/T is at least partly due to the blockade of the renal tubular secretion of creatinine by piperacillin
- Current evidence would suggest that the combination of V+P/T is no more nephrotoxic than Vancomycin alone

Speaker: David Gilbert, MD

Ceftriaxone "R" E. coli

- 25% "R" of organisms in the order Enterobacterale worldwide; In Asia, 50% of E.coli are resistant to ceftriaxone
- Most common mechanisms of resistance:
 - 1. Production of Extended spectrum betalactamase (ESBLs)
 - 2. If Enterobacter species: could be Production of Amp C cephalosporinase
 - Carbapenems effective in presence of both mechanisms
- Are there any carbapenem sparing cephalosporins?

Collateral Damage from **Carbapenem Therapy for ESBLs**

- Selection of CP "R" strains of Enterobacterales, and/or Non-Fermenters (e.g., Acinetobacter sp.)
- Selection of vanco "R" enterococci, MRSA, Candida species
- Nonetheless, based on the MERINO trial, Meropenem is Drug of Choice for treatement of ESBL producing **Enterobacteraceae**

FDA Approved Beta-Lactam Beta-Lactamase Inhibitor Combinations Penicillins Cephalosporins Carbapenems Amoxicillin-Ceftolozane-Meropenemclavulanate tazobactam vaborbactam Ampicillin -Ceftazidime-Imipenemsulbactam avihactam* cilastatinrelebactam Piperacillintazobactam Note: so far 6 Beta-lactam inhibitors and none inhibit class B metallo-carbapenemases * Only avibactam inhibits chromosomally-mediated AmpC ESBLs

ARQ #2

- 40 y.o. surgeon has surgical repair of torn anterior cruciate ligament of his knee.
 Single dose of cefazolin as prophylactic antibiotic.
- Three days later: Purulent knee exudate. GNB on gram stain. Ceftriaxone (CTX) started empirically
- At five days: Growing Klebsiella
- (Enterobacter) aerogenes suscept. To CTX At Ten days: Knee still inflamed. Repeat culture: K.(E.) aerogenes resistant to CTX

ARQ #2

- Which one of the following is the most likely explanation of the *Klebsiella(E.)* aerogenes resistance to ceftriaxone?
 - A.Mutation in Cephalosporin cell wall binding protein
 - B. Activation of a Cephalosporin efflux
 - C. Activation of an inducible chromosomal cephalosporinase
 - D. Expression of constitutive plasmid cephalosporinase

Empiric therapy for Enterobacter (Klebsiella) sp.

- Avoid cephalosporins (except ceftolozane/tazo), penicillins, BL/BLIs due to induction of Amp C resistance, and documented poor clinical outcomes in patients &/or animal models.
- Carbapenems current choice

Speaker: David Gilbert, MD

Ceficerocol Clinical studies: Microbial eradication: Imipenem 56%; Cefiderocol 73% Day 14 mortality: Best available therapy 12%; Cefiderochol 25% Has catechol side chain that utilizes iron transport system (siderophore). "Trojan horse" No serious AE, so far: GI 2-4%, C.difficile, Seizures For salvage therapy when no other option available

Fluoroquinolones

- Broad spectrum synthetic bactericidal antibiotics that inhibit DNA synthesis of both intracellular and extracellular bacteria
- Increasing antibacterial resistance
- Increasing recognition of serious adverse events
- Benefit needs to exceed risk