Speaker: Robert Weinstein, MD

Disclosures of Financial Relationships with Relevant Commercial Interests

None

TOPICS

- 1. Healthcare-associated Infection (HAI) Pathogens
- 2. Isolation Precautions
- 3. Device- and Procedure-related Infections
- 4. Antimicrobial Stewardship
- 5. Outbreaks
- 6. Occupational Health

TOPIC 1: PATHOGENS

Question #1

A 50 y.o. previously healthy woman developed a urinary tract infection after a 3-month trip to India. Symptoms persisted despite empiric antibiotic therapy. The most likely antimicrobial-resistant pathogen is:

- A. Carbapenem-resistant K. pneumoniae
- B. ESBL-producing *E. coli*
- C. Multi-drug resistant P. aeruginosa
- D. Vancomycin-resistant Enterococcus
- E. Candida auris

Speaker: Robert Weinstein, MD

equipment

A 40 y.o. woman was admitted via the Emergency Room to the trauma service after a motor vehicle accident. Eight days into her admission she developed fever and flu-like symptoms. An NP PCR test was positive for parainfluenza. The most likely source of infection is: A. Community exposure before admission B. In-hospital exposure to visitors or personnel C. Food-borne illness in the community D. Emergency Department exposure

E. In-hospital exposure to contaminated respiratory therapy

Incubation Periods fo	r Selected Pathogens	
• Influenza	1-4 days	
 Parainfluenza 	2-7 days	
 Norovirus 	12 - 48 hrs	
 Rotavirus 	<2 days	
• RSV	2-8 days	
• SARS-CoV-2	mean 5-6 (up to 14) days	
 Wound Infection 		
• Clostridia	24 - 48 hrs	
Group A Strep	24-48 hrs	
• S. aureus	5-7 days	
 Gram-negative bacilli 	>7 days (variable)	
3		

Characteristic	COVID-19	SARS-CoV/MERS-CoV	Influenza
Clinical severity	Asymptomatic to severe	Mostly severe	Mostly mild
Infection fatality risk	o.5% to 1%	10% (to 30%)	Seasonal: ≤0.1% 1918/1919 pandemic: 2%
Incubation period	Mean 5-6 (up to 14) days	Mean 3-5 (up to 14) days	Mean 1 (up to 3) days
Basic reproductive number	1.5 to 3.0	SARS: 1.5 to 4 MERS: 0.5 to 1	1.5 to 2.0
Modes of transmission	Respiratory droplets > aerosols Possible spread via fomites and fecal-oral	Respiratory droplets and aerosols Possible fomites	Respiratory droplets, som aerosols & fomites
Infectiousness profile	Most infectious <u>before</u> illness onset	Most infectious 7-10 days <u>after</u> illness onset	Most infectious around time of illness onset
Location of person-to- person transmission	Mainly community and long-term care facilities	Mainly hospitals	Mainly community; also can spread in hospitals
Importance of children in transmission dynamics	Unclear	Not important	Very important
Possible to avoid widespread transmission?	Unlikely	Yes	Maybe

TOPIC 2: ISOLATION PRECAUTIONS CONTROL & PREVENTION KEYED TO MODES OF TRANSMISSION • Contact • Direct (body-to-body) • Indirect (e.g., fomites/environment, HCWs' hands) • Droplet (>5 µm; travel 3-6 feet) • Airborne (droplet nuclei ≤ 5 µm; remain aloft) • Endogenous (auto-inoculation & device-related) • Common source (outbreak potential) • Vectorborne

Speaker: Robert Weinstein, MD

Question #3

A hospitalized patient with nosocomial Influenza A was treated promptly with oseltamivir. She should be placed on:

- A. Standard Precautions in any room
- B. Standard Precautions in a private room
- C. Contact Precautions
- D. Droplet Precautions
- E. Airborne Precautions

ISOLATION PRECAUTIONS — EXAMPLES OF INDICATIONS

- Standard All patients
- Contact Multidrug resistant bacteria, infectious diarrhea, Ebola, <u>chickenpox</u>
- Droplet Bacterial meningitis, pertussis, mumps, seasonal influenza
- · Airborne Tuberculosis, measles, chickenpox
- "Opportunistic" Airborne* SARS, MERS-CoV, SARS-CoV-2, Pandemic flu, Ebola, Some BT agents

*e.g., increased transmission risk during aerosol generating procedures (such as intubation)

Question #2

A 55 y.o. homeowner on Martha's Vineyard is admitted with fever and pneumonia. He recalls lawn mowing over a dead rabbit a few days ago. Blood cultures – patient's, not rabbit's – grow gram-negative coccobacilli aerobically. The appropriate patient placement and specimen lab containment are:

- A. Standard precautions for patient and lab containment for specimen
- B. Contact precautions for patient and no lab containment for specimen
- C. Droplet precautions for patient and no lab containment for specimen
- D. Respiratory isolation for patient and lab containment for specimen
- E. Strict (Respiratory & Contact) isolation for patient and lab containment for specimen

Speaker: Robert Weinstein, MD

Question #5

Which one of the following measures does not reduce the risk of CVC infections?

- A. Maximum barrier precautions for CVC insertion
- B. Removal of idle CVCs
- C. Avoiding guidewire-facilitated replacement of CVCs for infection control
- D. Preference for chlorhexidine for CVC site preparation
- E. Preference for placement of CVCs in operating rooms

CDC/HICPAC IV CATHETER INFECTION PREVENTION GUIDELINES USE THIS "BUNDLE" FOR A "CHECKLIST"

- Education of personnel
- Is catheter needed?
- Avoid routine central line replacement as an infection control strategy
- Chlorhexidine skin prep (other uses of chlorhexidine?)
- Maximum barrier precautions
- Use of coated catheters (if after full implementation of above, goals are not met)

http://www.cdc.gov/hicpac/pdf/guidelines/bsi-guidelines-2011.pdf
HICPAC = Healthcare Infection Control Practices Advisory Committee

Question #6

Which of the following patient care measures is least likely to be effective for preventing ventilator-associated pneumonias?

- A. Subglottic suction ports on ET tube
- B. Elevation of the heads of beds to 30-45 degrees
- C. Regularly scheduled changes of the ventilator tubing
- D. Assessing extubation readiness daily
- E. Non-invasive ventilation

VENTILATOR COMPLICATION PREVENTION BUNDLE – UPDATE

DO WHEN POSSIBLE

- Non-invasive ventilation
- Avoid sedation/ "Sedation Vacation" daily
- Assess extubation readiness daily/ breathing trials off sedatives
- Facilitate early mobility
- Use subglottic suction ports (if >48 hr intubation)
- Avoid ventilator circuit changes
- \bullet Elevate head of bed to 30-45 $^{\circ}$

<u>Increased Interest in Non-ventilator Healthcare-associated Pneumonia</u>

Klompas et al, Infect Control Hosp Epidemiol 2014; 35(8):915-36.

VENTILATOR COMPLICATION PREVENTION BUNDLE - UPDATE

SPECIAL APPROACHES

- Selective decontamination
- Oral chlorhexidine
- UltraThin ET tube cuffs
- Auto-control ET tube cuff pressure
- Saline instillation pre-suctioning
- Mechanical tooth brushing

Klompas et al, Infect Control Hosp Epidemiol 2014; 35(8):915-36.

VENTILATOR COMPLICATION PREVENTION BUNDLE – UPDATE

DON'T USE (FOR INFECTION PREVENTION)

- Silver-coated ET tubes
- Kinetic beds
- Prone positioning
- Stress ulcer prophylaxis
- Early tracheotomy
- Gastric volume residual monitoring
- Early parenteral nutrition

No Recommendation

Closed/in-line ET suctioning

Klompas et al, Infect Control Hosp Epidemiol 2014; 35(8):915-36.

Speaker: Robert Weinstein, MD

REDUCE SURGICAL SITE INFECTIONS

- Appropriate use of prophylactic antibiotics: start within 30-60 min of incision; stop within 24h
- Appropriate hair removal: no razors
 Surgical site skin prep Chlorhexidine-
- alcoholPerioperative normothermia (colorectal surgery patients)*
- Post operative glucose control (major cardiac surgery patients cared for in an ICU)*
- Supplemental perioperative oxygen
- Nasal S. aureus decolonization
 Checklists
- Reporting of rates
- * These interventions are supported by clinical trials and experimental evidence in the specified groups and may prove valuable for other surgical patients as well.

<u>Being studied</u>: Negative-pressure wound therapy <u>Not on list</u>: Laminar air flow technologies; UV light use

Refs: N Engl J Med 2010; 362:18-26 and JAMA Surg 2017; 152:784-91 and 2020; 155:479.

WHAT IS ESSENTIAL?* PREVENTING DEVICE AND PROCEDURE INFECTIONS: • HAND HYGIENE — Often the answer • CVC-BSI — CHG prep, maximum barrier precautions, daily CHG bathing, CVC removal • PIV — Observe site daily; change post ED insertion & q ≤3 days • VAP — Oral CHG & sedation vacations (tube removal), positioning 45° • UTI — Closed system & catheter removal • SSI — Skin prep, antibiotic prophylaxis timing, & capable surgeon • REPORT RATES • As device infection rates fall, increasing attention to other HAIs *Qualifier: RAW's views

SEVEN CORE ELEMENTS CRITICAL TO THE SUCCESS OF HOSPITAL ANTIBIOTIC STEWARDSHIP PROGRAMS

- LEADERSHIP COMMITMENT: Dedicating necessary human, financial, and information technology resources
- ACCOUNTABILITY: Appointing a single leader responsible for program outcomes. Experience with successful programs has shown that a physician leader is effective
- <u>Drug expertise</u>: Appointing a single pharmacist leader responsible for working to improve antibiotic use
- <u>ACTION</u>: Implementing at least one recommended action, such as systemic evaluation of ongoing treatment need after a set period of initial treatment (i.e., "antibiotic time out" after 48 hours)
- TRACKING: Monitoring antibiotic prescribing and resistance patterns
- <u>Reporting</u>: Regular reporting information on antibiotic use and resistance to doctors, nurses and relevant staff members
- EDUCATION: Educating clinicians about resistance and optimal prescribing

Source: CDC. Core elements of hospital antibiotic stewardship programs. Atlanta GA: US Department of Health and Human Services, 2014. Available at http://www.cdc.gov/getsmart/healthcare/implementation/core-elements.html

TOPIC 5: OUTBREAKS

Question #7

During a 1 week period, 5 of 15 ICU patients developed fulminant sepsis. Blood cultures from each grew Serratia marcescens; cultures of respiratory secretions and urine were normal flora and negative, respectively. No Serratia infections had occurred in this ICU in the past 3 months. On a general medical ward 2 months ago a patient had a Serratia cUTI.

The evaluation most likely to explain this ICU cluster of infections is a(n):

- A. Assessment of ICU staff hand hygiene adherence
- B. Whole genome sequence (WGS) analysis of the ICU Serratia isolates
- C. Case-control study focused on IV medications
- D. Rectal swab culture survey of patients in the ICU
- E. Environmental cultures of the ICU rooms of the infected and control patients

Speaker: Robert Weinstein, MD

STEPS IN THIS OUTBREAK INVESTIGATION

- 1. Establish existence of outbreak: Easily ID'd bacteria; unexpected change
- 2. Verify diagnosis: Serratia "primary (i.e., no apparent source) bacteremia"
- 3. Case count: 5
- 4. Orient data into time, place, person: 1 week, ICU, ICU patients
- 5. Determine size of population at risk: 15 patients in ICU (5/15 = 33% AR)
- 6. Develop hypothesis regarding source & mode of spread, e.g., indirect person-to-person, common source, personnel carrier: Primary bacteremia possible contaminated IV medications/infusions; high AR = common item?
- 7. Test hypothesis, refine above, plan and implement control measures. Test may be typing (such as PFGE or WGS) of epidemic isolates; case-control study: Assess IV exposures of infected and uninfected patients

SOME OUTBREAK ASSOCIATIONS

- Unusual bug (esp. if BSI): Think common-source contamination, e.g., Pantoea agglomerans, Pseudomonas spp, Flavobacterium from IV fluids or propofol; product contamination (extrinsic > instrinsic)
- Burkholderia cepacia Contaminated iodophors, benzalkonium chlorido
- Cronobacter (formerly Enterobacter) sakazakii yellow pigment, powdered infant formula
- Listeria foodborne (soft cheese, dairy, cabbage); miscarriages; a psychrophile
- Yersinia blood products, pork, hot dogs; post-infectious reactive arthritis; a psychrophile

KEY EMERGING OUTBREAK PATHOGENS

- Candida auris
 - Multi-continent emergence in "unrelated" outbreaks (different clades)
 - Heavy environmental contamination in affected nursing home and hospital wards
 - Some clades resistant to anti-fungals
- Mycobacteria (*M. chimera*) in CV surgery heatercooler devices

DRY & WET ENVIRONMENTAL CONTAMINATION INCREASINGLY IMPLICATED IN OUTBREAKS OF SOME NOSOCOMIAL PATHOGENS

Bacteria C. difficile, VRE, MRSA, Acinetobacter,

P. aeruginosa, "Water Bugs" (various gram-

negative bacilli)

Virus Norovirus, HBV, HCV; SARS-CoV-2 unlikely

Fungi Aspergillus, Mucor, Rhizopus, Candida auris

Mycobacterium M. chimera

TOPIC 6: OCCUPATIONAL HEALTH

Question #8

Your neighbor in posh Scarsdale asks you about his TB test results. Testing was required so that he could assist in a cooperative nursery school that his 3-year-old daughter attends. He was told that he had so mm of induration at 48 hours around his PPD skin test and a "blood test" was indeterminant. His chest x-ray had no active disease. Which of the following is the most appropriate prophylaxis in this case:

- A. 2 months of daily rifampin and pyrazinamide
- B. 3 months of weekly isoniazid and rifapentine
- C. 6 months of daily isoniazid
- D. 9 months of daily isoniazid
- E. Because no known exposure, not needed unless PPD ≥ 15 mm

MMWR Recomm Rep Feb 14, 2020; 69:1-11.

Speaker: Robert Weinstein, MD

EMPLOYEE HEALTH – COMMON QUESTION CLASSIFICATION OF THE TUBERCULIN REACTION REACTION OF ≥ 10 MM IS POSITIVE IN:

- Recent PPD converters (≥10mm increase within 2 years)
- Persons with medical risk factors (diabetes, silicosis, CKD, gastrectomy, j-i bypass, malnutrition, immunosuppressive therapy)
- Foreign-born persons from high prevalence countries
- Intravenous drug users or alcoholics

CLASSIFICATION OF THE TUBERCULIN REACTION (CONTINUED) A REACTION OF ≥ 10 MM IS POSITIVE IN:

- Residents of long-term-care facilities, such as correctional institutions and nursing homes or homeless individuals
- Other high risk populations identified locally, e.g., healthcare workers

CLASSIFICATION OF THE TUBERCULIN REACTION (CONTINUED) A REACTION OF ≥ 5 MM IS POSITIVE IN:

- Close contacts to patients with infectious tuberculosis
- Persons with HIV infection
- Persons who have CXRs with fibrotic lesions consistent with healed TB
- Organ transplant recipients
- Persons on ≥15mg/day of prednisone for ≥1 month
- Persons on TNF- α antagonist treatment

CLASSIFICATION OF THE TUBERCULIN REACTION (CONTINUED) A REACTION OF ≥ 15 MM IS POSITIVE IN:

• Persons with no additional risk factors for tuberculosis

But PPD tests now often replaced by IGRAs

IGRAs = Interferon gamma release assays

Question #9

A health care worker who is planning international travel as the COVID-19 pandemic wanes gets a booster dose of MMR vaccine. His work restrictions during the 2 weeks after vaccination should be:

- A. Furlough
- B. Work in non-patient contact area
- C. No contact with immunosuppressed patients
- D. No restrictions unless there is evidence of vaccine-related fever or rash
- E. No restrictions

Question #10

A hospital policeman was stabbed with a used IV needle by a combative patient. The patient was in the hospital for treatment of secondary syphilis (RPR 1:128); the patient also had positive tests for HIV antibody, HCV antibody, and HBs Ag. MRI of the patient's brain showed extensive white matter disease without edema. The policeman was a new hire; his recent serologic tests for HBV and HCV were negative.

Speaker: Robert Weinstein, MD

