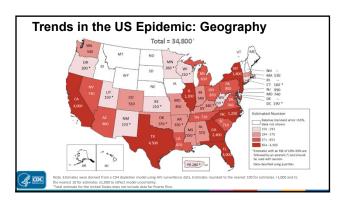
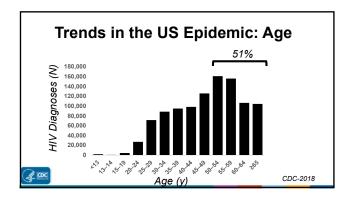
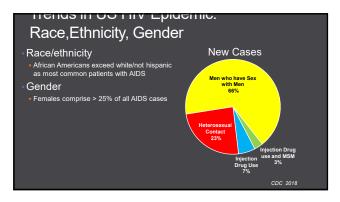
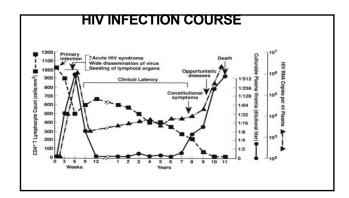

Speaker: Frank Maldarelli, MD









Speaker: Frank Maldarelli, MD

Acute HIV Synd	drome		
1	Per	cent Reno	rtina
Sign/symptom	NEJM Review	cent Repo	HIVNET
Fever Fatique	>80-90 >70-90	53 26	55 56
Rasň	>40-80	9	16
Headache Lymphadenopathy	32-70 40-70	26 9 44 7	33 35
Pharyngitis	50-70	15 24	43
Pharyngitis Myalgia or arthralgia Nausea, vomiting or diarrhea	50-70	24	39
diarrhea	30-60	18	12-27
Night sweats Aseptic meningitis	50	nd	nd
Aseptic meningitis Oral ulcers	24	nd	nd
Genital ulcers	10-20 5-15	nd 3	6 nd
Thrombocytopenia	45	nd	nd
Leukopenia Elevated LFTs	40	nd	nd
Too ill to work	2 nd	nd 44	nd 58

HIV Diagnosis: Question #1

A 23 year old man presents with a history of unprotected receptive anal sex with known HIV-infected man, and one week of fever, adenopathy. HIV-1/2 ELISA is reactive, viral RNA level 500,000 c/ml.

He is started immediately on antiretrovirals.

His supplemental assay is negative, and $\$ repeat assays sent 3 weeks, 3 months, and one year after starting antiretrovirals are also negative.

ELISA remains reactive. HIV-2 assay is negative.

Viral RNA on therapy is <40 c/ml.

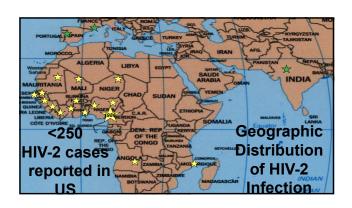
Speaker: Frank Maldarelli, MD

HIV Diagnosis: Question #1 continued

Which of the following is correct explanation for the absence of positive results with the supplementary HIV test:

- A. The patient was infected with a strain of HIV-1 that was not detected by the confirmatory assay
- B. The patient is HIV-infected but did not develop a positive results with the supplementary assay because of the early antiretroviral therapy intervention
- c. The patient never had HIV infection.
- D. The patient had HIV but is now cured of HIV and antiretrovirals can safely be stopped

Early Antiretroviral Therapy


- · Prompt reduction in HIV-1 RNA
- · Potential blunting of humoral immune response
- · Confirmatory assay may remain negative
- HIV-1 DNA PCR has been useful in documenting infection

HIV Clinical Presentation: Question #2

A 49 year old woman from Guinea-Bissau has a reactive HIV-1/2 ELISA and a HIV Geenius positive for HIV-2 and negative for HIV-1. CD4 cell count is 350 cells/µl.

Which of the following is correct?

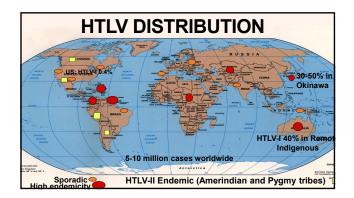
- A. HIV-2 is less pathogenic than HIV-1 so she only needs therapy with one antiretroviral drug
- B. She should not be treated with protease inhibitors because HIV-2 is naturally resistant to PIs.
- C. She should not be treated with NNRTI therapy because HIV-2 is naturally resistant to NNRTIs.
- D. Use of routine HIV-1 viral load assays is useful in patient management

HIV-1 and HIV-2			
Characteristic	HIV-2	HIV-1	
Epidemiology Geography Local Distribution Prevalence	West /Central Africa Urban=rural Stable or Decreasing	Worldwide Urban>rural Increasing	
Pathogenesis Average age at diagnosis Maternal-fetal (without RX)	45-55 0-4%	20-34 20-35%	
Kaposi Sarcoma	Less common (10X)	More common	
Therapy	NRTI, PI, INSTI, Corec	NRTI, PI, NNRTI	
Diagnosis	NOT NNRTI NOT Fusion	INSTI, Corec, Fusi	
Screening Confirmatory	HIV1/2 ELISA Supplemental (e.g., Geenius)	HIV1/2 ELISA Supplemental	
Monitoring	HIV-2 RNA Assay	Qual. HIV RNA) HIV-1 RNA assa	

Question #3

QUESTION #3
A 42 year old man from the Haiti presents with fever, moderate respiratory distress, and nonproductive cough. HIV-1/2 ELISA is reactive and discriminatory test is positive for HIV-1. A PCR test of the induced sputum is positive for Pneumocystis jiroveci. On evaluation the lymphocyte count is 2,000 cells/µl; the CD4 count is 750 cells/µl and the hematology technician remarks that some of the lymphocytes are "flower cells". Which of the following is most correct in explaining the hematology findings:

- A. The patient has HIV and B cell lymphoma
- B. The patient has HIV infection and the elevated CD4 count is due to steroids used in the treatment of the *Pneumocystis* pneumonia
- C. The patient has HTLV-1 infection only the HIV test is a false positive
- The patient has both HIV infection and HTLV-1 infection

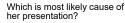

Speaker: Frank Maldarelli, MD

Question #4

A 25 year old pregnant woman immigrant from southern Japan was referred to you for evaluation of a positive HTLV-I western blot. Which of the following statements is true:

- The risk of HTLV-I transmission can be entirely eliminated by caesarean section.

 The risk of HTLV-I transmission will be entirely eliminated by not
- В.
- Breastfeeding will provide sufficient immunity to prevent infection with HTLV-I. C.
- The risk of HTLV-I transmission will be significantly decreased but not entirely eliminated by avoiding breastfeeding.
- There is no risk of $\overline{\text{HTLV-I}}$ disease. In this ethnic group, the $\overline{\text{HTLV-I}}$ test was likely a false positive.


HTLV-I Transmission

- Breastfeeding
- ■Prolonged duration: 20-30% seroconvert if breastfed >12 mos
- •High maternal HTLV proviral load in breastmilk: 28.7 infections/1000 person months with 1.5% HTLV+ lymphs
- Sexual
- Transfusion
- •Risk of seroconversion: 40-60%
- Testing Sequential ELISA/Western blot

Question #5

37 year old Jamaican female with diffuse pruritic rash (right), bone pain with lytic bone lesions.

WBC: 50,000, 90% lymphocytes

- HTLV-I
- HTLV-II C. HIV-1
- HTLV-IV

HTLV-I Acute T cell Leukemia (ATL)

- Epidemiology
 Approximately 1% of HTLV- I infected adults
 M>F (Japan); M=F (Jamaica)
- - Infectious
 TB, MAC, Leprosy
 PCP

 - Recurrent Strongyloides
 Scabies esp. Norwegian scabies
 - Noninfectious-hypercalcemia+lytic bone lesions
- Therapy

 Cytotoxic chemotherapy

 AZT+Ifn
- Transplant
- Mogamulizumab (Poteligeo, anti-CCR4 monoclonal) APPROVED in Japan for ATL
 Lenalidamide

Question #6

38 year old woman from Jamaica presents with weakness, unsteadiness of several months duration and has recently developed incontinence. Neurologic exam notes hyperreflexia ankle clonus, and positive Babinski reflex

WBC = 7500 cells/ul

CD4 T cell = 1000 cells/ul

CSF cell count: 10 cells/mm3 (lymphocytes)

CSF protein: 75 mg/dl

Speaker: Frank Maldarelli, MD

Question #6 Continued

The etiologic agent associated with this illness is also associated with

- A. Acute T cell leukemia
- Multiple sclerosis B.
- C. Variant Creutzfeldt-Jacob
- Hemorrhagic cystitis D.

HTLV-I Tropical Spastic Paraparesis /HTLV-1 Associated Myelopathy

- Epidemiology
- <1% of HTLV-I develop HAM/TSP</p>
- The second most common neurologic syndrome in
- Jamaica after stroke
- · Latency may be short--several years
- Female predominance

HTLV-I TSP/HAM

- Presentation
- Spastic paraparesis o Proximal>distal
- Bladder disturbance
- Hyperreflexia
- Positive Babinski reflex
- · Differential Diagnosis
- Cord compression
- B12 deficiency
- Syphilis
- HIV-1 myelopathy
- Multiple sclerosis

Therapy of HTLV-I TSP/HAM

- Corticosteroids
- ·May slow progression and reduce disability
- Mogamulizumab
- Antiretroviral therapy is NOT effective

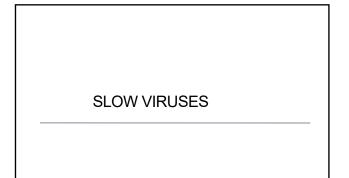
Question #7

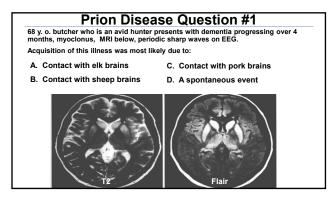
You are asked to see a 62 year old male smoker, former IV drug user for evaluation of recurrent cough and weight loss. Evaluation reveals metastatic non-small cell lung cancer. Serologic testing notes he is HIV negative, HTLV-1 negative, but HTLV-2 positive. The oncology team calls regarding your advice about HTLV-2 and treating the patient with the checkpoint inhibitor durvalumab (blocking PDL-1 interactions with PD-1) in addition to chemotherapy. Which of the following is most correct:

- He should not be treated with durvalumab
- B. He can be treated with durvalumab, but will also require therapy for HTLV-2 infection
- C. He can be treated with durvalumab, but is at increased risk for other infectious complications, like *Pneumocystis jiroveci* compared with HTLV-2 uninfected individuals.
- He can be treated with durvalumab and does not require additional therapy for HTLV-2 infection

Pearls

HTLV-1 Infection

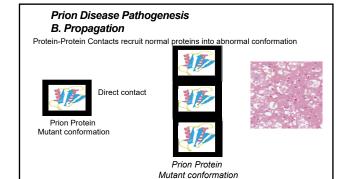

- Asymptomatic -95% Acute T cell Leukemia HAM/TSP
- But also
- ut also Bronchiectasis Uveitis Rheumatologic syndromes
- Lymphocytic pneumonitis
 Infective Dermatitis (pediatric)
- "Flower" cells
 Lymphocytes with HTLV provirus present
 Frequency in HIGHER in ATL and HAM/TSP
 NOT an indication for specific therapy


Associated Infections

- Strongyloides hyperinfection
- · Norwegian Scabies
- Pneumocystis
- · MAC
- · HTLV-2 is a distractor

Thanks to Tamara Nawar, Ying Taur, Anna Kaltsas (SKMC, NYC)

Speaker: Frank Maldarelli, MD



Prion Diseases: Transmissible Spongiform Encephalopathies

- Spontaneous (N=~6000 worldwide per year)
- Sporadic Creutzfeldt-Jakob disease (sCJD)
- Associated with specific ingestion
- Beef from cows with Bovine Spongiform Encephalopathy
 Denoted "Variant CJD", "vCJD" (N ~ 220 total cases)
- Human brains
 Kuru (N= ~2700 total cases)

- Associated with a medical procedure (N \sim 450 total cases)
- latrogenicDenoted "iCJD"
- · Hereditary (N ~600-900 worldwide per year)
- Familial (fCJD)
 Gerstmann-Straussler-Sheinker (GSS)
- Fatal Familial Insomnia (FFI)
- Fatal Sporadic Insomnia (FSI)

Prion Disease Pathogenesis A. Initiation The prion protein is a host protein with a normal and abnormal conformation (b) NORMAL Transition to abnormal conformation is rare but essentially irreversible Naturally occurring mutations favor interconversion

Spontaneous Creutzfeldt-Jacob Disease (sCJD) **Epidemiology**

- Most common human Transmissible Spongiform Encephalopathy (TSE)
- ■95% cases
- Incidence estimated 1 per million
- ■US: 0.1/million in <55 yo, 5.3/million >55 yo
- Mean age of onset is 60 years

Speaker: Frank Maldarelli, MD

	Dementia Comparison					
Туре	Protein	Clinical	Course	Path	MRI	
sCJD	Prion	Myoclonus	<2y	Spongif. Degen.	Caudate Striatum Thalamus	
Alzheimer	Apo E4, Tau	Memory Language	>4 y	Neurofib. tangles	Hippocampus White matter	
Lewy Body	lpha- Synuclein	Parkinsonian Visual hallucin.	>4 y	Lewy Bodies	Less common	
Multi-infarct	Atheroma	Focal	Incremental	Vascular	Caudate,Pons Thalamus Ovoid Nuc	

Prion Disease Question #2


A 68 year old man with dementia progressing over the last 6 months undergoes evaluation. Which of the following CSF results is most consistent with Creutzfeld Jakob Disease:

A. 14-3-3 protein: Positive

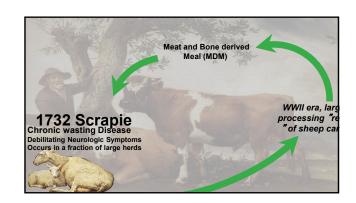
B. RT-QuIC: Positive

C. T-tau protein: 3000 pg/ml (normal 0-1150 pg/mL)

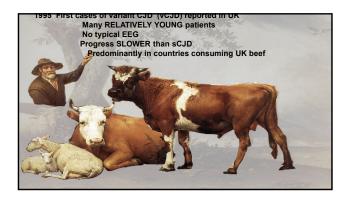
D. Abeta42: 1250 (normal >1026 pg/mL)

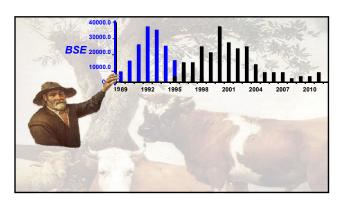
Spontaneous Creutzfeldt-Jacob Disease

Typical Clinical Presentation


- Rapid progression
- Classic Clinical Triad
- Dementia
- Myoclonus
- •EEG: periodic sharp waves
- RT-QuIC elevated abnormal prion protein
- 14-3-3 not specific for CJD

Prion Disease Question #2


A 30 year old man presents with dementia progressing over the last year. He was born in rural Indonesia, lived in London from 1990 – 2010, then moved to Philadelphia.


Which of the following diseases is most likely the cause of his symptoms:

- A. Kuru
- B. variant Creutzfeldt-Jacob Disease
- C. Familial Creutzfeldt-Jacob Disease
- D. Rabies

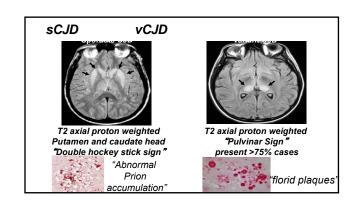
Speaker: Frank Maldarelli, MD

Question #4 vCJD Geographic Distribution

Residence in which of the following countries after 1980 represents the highest risk for acquiring variant CJD (vCJD):

- A. France
- B. Borneo
- C. United States
- D. Australia
- E. Argentina

Numbers of vCJD Cases Worldwide


United Kingdom: 178
 France: 28
 Spain: 5
 US: 4

-(ALL infections acquired OUTSIDE of US)

Ireland: 4
Netherlands, Italy: 3
Portugal, Canada: 2 each
Saudi Arabia, Japan, Taiwan: 1 each

(Nat'l CJD Res. Surv. Unit, U. Edinburgh, www.cjd.ed.ac.uk 2019)

CJD vs. sCJD				
	sCJD	vCJD		
Source	Spontaneous event	Ingested beef		
Distribution	Worldwide	Linked to Beef originating largely in UK		
Median Age (y)	68	28		
Progression	SHORTER	LONGER		
EEG	Typically abnormal	NOT Typically abnormal		
MRI Basal ganglia	"Double Hockey Stick"	"Pulvinar sign"		
Pathology	Abnormal Prion Protein deposits	"Florid Plaques"		

Speaker: Frank Maldarelli, MD

Prion Diseases Question #5

A 49 year old man recently emigrated from Japan presents with rapidly progressing dementia.

He underwent a meningioma resection with dura mater graft in Japan 35 years ago.

He is an avid deer hunter and consumes venison.

What is the most likely cause of his dementia:

- A. latrogenic CJD from the dura mater graft
- B. latrogenic CJD from eating deer.
- C. HTLV-I
- D. Spontaneous CJD

latrogenic CJD ~450 cases

Definite Causes

- Pituitary extracts - Human Growth Hormone
- Gonadotrophin • Delay may be >30 y
- (Role in AD as well?)
- Dura mater grafts
- Mostly Lyodura brand Transplants
- Corneal
- Pericardium Liver
- Instrumentation
 - Implantable Neurosurgical-EEG, stereotactic

No Link

- Vaccines
- Feces
- Saliva
- Sputum
- Bovine insulin
- Semen, vaginal secretions

Transmissible Spongiform **Encephalopathy: Time and Place** Mode of Geographic Risk Window transmission Region 1980-present UK, France, Europe Beef ingestion Human growth France 1963-1985 hormone Dura mater graft Japan 1969-1987

Zoonotic Transmission CJD

Documented Risk

No Documented Risk

- Ingestion of Beef
- Geographically limited
- Emphasis on UK. France
- Transmissible Mink Encephalopathy
- Elk. Mule deer: · Chronic Wasting Disease
- Sheep, goats Scrapie
- Cat:
- · Feline Spongiform Encephalopathy

CJD and Blood Supply

- ■Transfusion-associated vCJD rarely documented (N=4, UK)
- NO documented transfusion-associated sCJD
- •No FDA approved tests to detect transmission
- Deferred from blood donation
- Dura mater graft or human growth hormone
- Donors with CJD or family history of CJD
- Residence in Europe after 1980
- Transfusion in Europe after 1980
- Bovine insulin after 1980 unless certain that insulin was not from UK

Transmissible Spongiform Encephalopathy

Infection Control Issues

- Universal precautions
- · No confirmed occupational transmissions
- CJD in health care workers occurs, occupational links have been suggested
- · Incinerate single use instruments
- Inactivate other instruments and materials
- 1N NaOH
- autoclave 121° C, 15 psi 30 min
- · Formic acid for tissue sections
- Alternatives include hypochlorite (20,000 ppm chlorine) + autoclave
- REMEMBER: Infectivity is STABLIZED by alcohol, formalin, or glutaraldehyde
- WHO infection control guidelines
- http://www.who.int/csr/resources/publications/bse/whocdscsraph2003.pdf?ua=1

Speaker: Frank Maldarelli, MD

Transmissible Spongiform Encephalopathy **Therapy**

- None
- uniformly fatal

Kuru "shivering,trembling"

- · Fore tribe Papua New Guinea
- · Ritual mourning w/cannibalism
- Older females, children (especially female)
- Progressive Ataxia w/dementia
- Ambulant, leaning (pictured)

as children

- SedentaryTerminal "laughing death"
- "Florid plaques" (inset) on H+E
- · No maternal/fetal transmission
- · New cases would have been infected
- No cases <40 y.o. since 1991

RESOURCES

- RT-QuIC: Case Western
 - $\frac{https://case.edu/medicine/pathology/divisions/national-prion-disease-pathology-surveillance-center/resources-professionals/contact-and-shipping-information}{}$
- **Epidemiology**
 - https://www.cdc.gov/prions/cjd/resources.html
- Patient support
 - n.org/other-resources
- fmaldarelli3@gmail.com