4 - Respiratory Viral Infections Including Influenza, Immunocompetent, and Immunocompromised Patients

Speaker: Andrew T. Pavia, MD

What you need to know for the boards
- Minimal virology
- Epidemiology including H5N1 and H7N9
- Diagnosis
- Complications
- Treatment
- Vaccines

Influenza virus
- Orthomyxovirus; 8 gene segments
- Flu A, B and C
- Flu A has 16 HA types, 9 N types
- High error rate leads to point mutations (drift); segment reassortment leads to shift (pandemics)
- Huge reservoir in wild fowl. Cause disease in poultry, and many mammals
- Mutations in neuraminidase lead to resistance to NAIs

Clinical findings of influenza
- Fever, malaise, cough, sore throat, myalgia, chills, eye pain
- Sudden onset is typical
- During an epidemic, fever with cough has high predictive value
- Fever may be absent in the elderly, immunocompromised
- Minor complications: Croup, bronchiolitis, asthma exacerbation, otitis media, sinusitis, parotitis

©2020 Infectious Disease Board Review, LLC
Groups at Risk for Complications of Influenza

<table>
<thead>
<tr>
<th>Group</th>
<th>Example/Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children <5 yrs</td>
<td>Highest hospitalization rate children <1 yr</td>
</tr>
<tr>
<td>Persons >65 yrs</td>
<td>Highest among frail elderly</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>Highest risk in 3rd trimester and 2 weeks post partum</td>
</tr>
<tr>
<td>Chronic CVD</td>
<td>Hypertension not seen as independent risk</td>
</tr>
<tr>
<td>Chronic lung</td>
<td>Asthma and/or COPD, cystic fibrosis</td>
</tr>
<tr>
<td>Metabolic disorder</td>
<td>Diabetes</td>
</tr>
<tr>
<td>Renal, Hematologic</td>
<td>Includes sickle cell disease</td>
</tr>
<tr>
<td>Neurologic</td>
<td>Neuromuscular, neurocognitive, or seizure disorder</td>
</tr>
<tr>
<td>Immunosuppression</td>
<td>Including HIV, organ transplantation, chemotherapy, hypogamm</td>
</tr>
<tr>
<td>Morbid obesity</td>
<td>Noted in several studies during H1N1</td>
</tr>
<tr>
<td>Am. Indian/Alaskan</td>
<td>Recently added</td>
</tr>
</tbody>
</table>

Question #1

A 45-year-old international agricultural researcher presents in June in the US with fever, diarrhea, myalgia, sore throat, and dyspnea. He is hypotensive and hypoxemic.

- CBC shows mild leukopenia, chemistry panel and LFT's are normal.
- Three days prior to the onset of his illness he was inspecting poultry operations Jiangsu Province, China.

Assuming he acquired his severe respiratory illness from the poultry he was inspecting, the most likely influenza diagnosis would be:

A. H1N1
B. H3N2
C. H5N1
D. H7N9
E. Influenza B

What makes a human influenza strain

- Despite increasing study anticipating changes difficult
- Many genes interacting in complex ways determine virulence species specificity and transmissibility (e.g. 1918 H1N1 virus)
- Influenza risk assessment tool (IRAT)

Influenza A viruses infecting humans

- H1N1*: Emerged in 1918, re-emerged in 1977
- H2N2: 1956-1977 but replaced by H3N2
- H3N2*: Emerged in 1968 (Hong Kong flu)
- H3N2v: Assorted swine associated variants
- H5N1*: Emerged 2003 in Hong Kong, Persists
- H7N9*: Caused >130 cases of severe disease 2013; >200 in second wave; emerging
- H7N3: Isolated cases in farm workers
- H7N7: Human cases associated with outbreak in Netherlands. H7 viruses associated with conjunctivitis
- H9N2: Sporadic cases associated with poultry

* Currently causing human disease

H7N9 Avian influenza

- > 1500 cases in 5 years
- 22% case fatality
- Avian to human transmission
- Family clusters with human to human documented
- Some intrinsic and some emergent oseltamivir resistance
- Exported cases
 - US x 2, Canada, Hong Kong, Taipei
4 - Respiratory Viral Infections Including Influenza, Immunocompetent, and Immunocompromised Patients
Speaker: Andrew T. Pavia, MD

Influenza Transmission
- Incubation period: 1-4 days (average: 2 days)
- Serial interval: estimated 3-4 days among household contacts
- Shedding:
 - Adults: day before symptoms; 5-7 days after illness onset
 - Young children: 1-2 days before illness onset; 10 or more days after symptom onset
 - Immunocompromised or severely immunosuppressed persons: weeks to months has been documented
- Large droplets (up to 6 feet) most important. Fomite and small droplet (true airborne) may contribute.
- Standard plus droplet precautions recommended
- “Use caution” for aerosol generating procedures
- Monitor and manage ill healthcare personnel

http://www.cdc.gov/flu/professionals/infectioncontrol/healthcaresettings.htm

Question #2
- Five days ago (January), a healthy 25 year old woman developed fever, myalgia, sore throat and malaise which was diagnosed as influenza. She was slowly improving.
- Sixteen hours ago, she became hypotensive and hypoxemic, complained of diarrhea, abdominal pain, had a diffuse erythematous rash.

Question #2 Continued
What is the most likely cause of this influenza complication?:
A. Reye’s syndrome
B. Staph aureus pneumonia with Toxic shock syndrome
C. Gram negative sepsis with ARDS
D. Pneumococcal meningitis
E. Viral encephalitis

Severe complications of influenza
<table>
<thead>
<tr>
<th>Complication</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exacerbation of underlying illness</td>
<td>COPD, asthma, CHF</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Ecologic association</td>
</tr>
<tr>
<td>Viral pneumonia</td>
<td>May be mild or severe hemorrhagic pneumonia/ARDS</td>
</tr>
<tr>
<td>Secondary bacterial infection</td>
<td>Streptococci, GAS, S. aureus. Classically marked worsening after initial improvement. Account for large proportion of pandemic deaths</td>
</tr>
<tr>
<td>Toxic Shock Syndrome</td>
<td>Streptococcal TSS most commonly described but GAS also reported</td>
</tr>
<tr>
<td>Invasive aspergillosis</td>
<td>Clusters in Belgium and Netherlands. Rare reports worldwide</td>
</tr>
</tbody>
</table>

©2020 Infectious Disease Board Review, LLC
Influenza associated hemorrhagic pneumonitis

Question #3
An 18 year old high school student develops chills, fever, cough, myalgia in January. She is prescribed azithromycin, rest and NSAIDS. Fever and cough continue and she becomes progressively dyspneic and weak. On admission T 39, P 150, RR 24-30, BP 120/50. She has crackles throughout both bases and a gallop. Influenza PCR positive
- WBC =9000/mm3 (60% polys, 30% bands)
- Creatinine 1.9
- BNP markedly elevated
- CXR shows diffuse bilateral infiltrates and cardiomegaly
- Requires V-A ECMO

Question #3 Continued
What is the most likely cause of this influenza complication?:
A. Pneumococcal pneumonia
B. Staph aureus pneumonia with purulent pericarditis
C. Influenza cardiomyopathy
D. MIS-C due to recent SARS-CoV-2 infection
E. Viral pericarditis with effusion

Non-respiratory complications of influenza

Question #4
• A 20 year old woman is 18 days out from HSCT in January on and engrafted 3 days ago.
• She develops fever, hypoxemia, bilateral lung infiltrates and is intubated.
• A nasal swab is negative by rapid test for influenza.

Question #4 Continued
Which of the following is the most appropriate course of action (regardless of other actions you may take)?
A. Do not initiate anti-influenza therapy due to result of rapid test. The timing suggests idiopathic pulmonary syndrome (engraftment)
B. Initiate anti-influenza therapy empirically and send tracheal aspirate or BAL for influenza PCR
C. Send IgG and IgM for influenza
D. Send RSV EIA and initiate empiric IV ribavirin
Diagnosis of influenza

- Performance of all tests depends on prevalence of virus in community and specimen quality
- Clinical diagnosis: up to 80% PPV during peak
- Rapid influenza detection tests have low-moderate sensitivity 10-70% (less for H1N1); reasonably specific
- Positive test in peak season high PPV; negative test should not be used for decisions
- PCR/NAAT recommended by IDSA Guidelines, rapid platforms expanding
- Serology useless for clinical diagnosis

Influenza in transplant pearls

- Typical flu symptoms less common
- Lower respiratory tract disease is common
- Spread on transplant units can be explosive - High mortality
- Virus may not be present in nasopharynx in patients with influenza pneumonia – lower tract specimens should also be tested.
- Prolonged shedding is common
- Resistance may develop on oseltamivir therapy especially in HSCT patients

Question #5

- A 32 year old nurse is 34 weeks pregnant during influenza season. She develops influenza symptoms and is seen at an instacare where a rapid test is positive and she is given azithromycin.
- 72 hours after the onset she presents to the ED with fever, tachypnea, hypoxemia and decreased urine output.
- CXR shows bilateral hazy infiltrates. She is hospitalized.

Which of the following is correct?

A. She should get supportive care only since she has had symptoms for >48 hours
B. Oseltamivir is relatively contraindicated in pregnancy
C. Zanamivir is clearly preferred because of low systemic absorption
D. Oseltamivir should be started as soon as possible

ACIP and IDSA Guidelines for Antiviral Use 2020

- Antiviral treatment is recommended for patients with confirmed or suspected influenza as soon as possible for:
 - Who are hospitalized, or have severe, complicated or progressive illness regardless of duration of symptoms
 - Outpatients with confirmed or suspected influenza who are at higher risk for influenza complications based on their age and/or medical conditions

http://www.cdc.gov/flu/professionals/antivirals/index.htm

©2020 Infectious Disease Board Review, LLC
ACIP Guidelines for Antiviral Use 2020 (con’t.)

- Recommended medications: oseltamivir and zanamivir
- Oseltamivir should be used, when indicated to provide treatment or chemoprophylaxis for infants younger than one year old

https://www.cdc.gov/flu/professionals/antivirals/index.htm

CDC Antiviral Treatment Recommendations

- Empiric antiviral therapy should be offered to pregnant women and women up to 2 weeks postpartum
- Pregnancy should not be considered a contraindication to oral oseltamivir or zanamivir use.
- Treatment duration for NAIs should be 5 days
- Initiating treatment within 2 days of symptoms results in improved outcomes
 - Substantial reduction in morbidity and mortality

https://www.cdc.gov/flu/professionals/antivirals/avrec_ob.htm

Baloxavir

- Cap-dependent polymerase inhibitor
- Non inferior to oseltamivir in two phase 3 studies
- Superior for influenza B in patients with risk factors
- Shorter duration of shedding
- Resistance mutations emerge on treatment in 10-20%
- Testable

Hayden NEJM 2018; 379:913-923
Ison Lancet Infect Dis 2020: Jun 8; S1473-3099
Uehara JID 2019; 221:346

Antiviral Prophylaxis

- Chemoprophylaxis should not replace vaccination
- Oseltamivir, zanamivir, baloxavir 70-90% effective in trials
- Prophylaxis may increase selection of resistant viruses
- PEP is recommended to control influenza outbreaks in nursing homes
- PEP can be considered for high risk persons with unprotected contact with patient with flu
- Post exposure prophylaxis should not be given after 48 hours from exposure
- Post exposure prophylaxis for otherwise healthy persons is generally discouraged; prompt empiric therapy is preferable

Influenza antiviral pearls

- Antivirals not effective after 48 hours in outpatients with uncomplicated flu but are effective later in hospitalized patients
- Double dose oseltamivir not more effective
- Resistance to oseltamivir occurs most often through a specific point mutation H275Y in H1N1 viruses (functionally same as H274Y in N2). This confers partial resistance ~40-fold to peramivir but not baloxavir

More influenza antiviral pearls

- Zanamivir remains active against H275Y mutant influenza and most oseltamivir resistant viruses
- Peramivir licensed (600 mg IV x 1) but only for acute uncomplicated
- Inhaled zanamivir can exacerbate asthma, not approved under 5 years
- Using commercial powder of zanamivir in ventilator circuit has caused catastrophic ventilator failure

©2020 Infectious Disease Board Review, LLC
ACIP Recommendations for Influenza vaccination 2020-2021
- Routine influenza vaccination is recommended for all persons aged 6 months and older.
- “During the COVID-19 pandemic, reducing the overall burden of respiratory illnesses is important to protect vulnerable populations at risk for severe illness, the healthcare system, and other critical infrastructure.”
- QIV (Quadrivalent inactivated influenza vaccine) H1N1, H3N2, B Yamagata, B Victoria

Vaccine pearls
- Efficacy varies by year and group
- Generally 50-70%; lower in elderly, children < 2, renal disease, immunosuppressive therapy and transplant pts.
- In HIV, response related to CD4 count
- Major mismatch occurs at least every 10 years

Newer flu vaccines
- Quadrivalent vaccines (IIV4) largely replacing IIV3
- High dose (60mcg HA) vaccine is available for persons > 65 years. More immunogenic and more effective
- Adjuvanted vaccine available for persons > 65. More immunogenic, possibly more effective
- Recombinant vaccine contains no egg antigen. Cell culture grown vaccine (Flucellvax) has minimal to no egg antigen

Egg Allergy
- Persons with a history of egg allergy who have experienced only hives after exposure to egg should receive flu vaccine. Any licensed and recommended flu vaccine (i.e., any form of IIV or RIV) that is otherwise appropriate for the recipient’s age and health status may be used.
- Persons who report having had reactions to egg involving symptoms other than hives... or who required epinephrine or another emergency medical intervention, may similarly receive any licensed and recommended flu vaccine (i.e., any form of IIV or RIV) that is otherwise appropriate for the recipient’s age and health status. The selected vaccine should be administered in an inpatient or outpatient medical setting. Vaccine administration should be supervised by a health care provider who is able to recognize and manage severe allergic conditions.
- A previous severe allergic reaction to flu vaccine, regardless of the component suspected of being responsible for the reaction, is a contraindication to future receipt of the vaccine. https://www.cdc.gov/flu/prevent/egg-allergies.htm
Other important respiratory viruses
Adenovirus, RSV, hMPV, parainfluenza, coronaviruses, hantaviruses (and more)

What you may be tested on
- Focus on lower respiratory tract disease in immunocompetent and compromised hosts, including the elderly
- RSV, adenoviruses, hMPV are fair game
- Parainfluenza viruses possibly
- Coronaviruses including MERS (possible) and SARS (unlikely)
 NOT SARS-CoV-2
- Hantavirus is a popular zebra

Incidence of pathogens in older adults hospitalized with CAP

Findings which may suggest viral vs bacterial CAP: beware the overlap!

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Viral</th>
<th>Bacterial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset</td>
<td>Gradual</td>
<td>Sudden</td>
</tr>
<tr>
<td>Season</td>
<td>Winter, associated with viral outbreaks</td>
<td>Slightly less seasonal</td>
</tr>
<tr>
<td>Host</td>
<td>Older age, more cardiac and pulmonary disease</td>
<td>Any age</td>
</tr>
<tr>
<td>Exam</td>
<td>Wheezing</td>
<td>Consolidation</td>
</tr>
<tr>
<td>CBC</td>
<td>Leukopenia</td>
<td>Leukocytosis</td>
</tr>
<tr>
<td>Procalcitonin</td>
<td>< 0.1</td>
<td>> 0.5</td>
</tr>
<tr>
<td>CRP</td>
<td>Lower</td>
<td>Higher</td>
</tr>
<tr>
<td>CXR (big overlap)</td>
<td>Interstitial, multilobar</td>
<td>Consolidated, effusion</td>
</tr>
</tbody>
</table>

Diagnosis of respiratory viruses in adults
- Generally shed less virus than children
- Sensitivity depends on test and specimen. Flocked swab and swabbing nose and throat may be better
- Virus may be present in lower respiratory tract (TA/BAL) but not upper in patients with pneumonia
- PCR most sensitive. FDA cleared multiplex platforms available
- Testing is critical in immunocompromised transplant patients with respiratory symptoms
4 - Respiratory Viral Infections Including Influenza, Immunocompetent, and Immunocompromised Patients
Speaker: Andrew T. Pavia, MD

Respiratory Viruses in HSC Transplant Patients

<table>
<thead>
<tr>
<th>Virus</th>
<th>Mortality for pneumonia</th>
<th>Treatment</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSV</td>
<td>7-33%</td>
<td>IVIG, ribavirin</td>
<td>LRI associated with severe outcomes</td>
</tr>
<tr>
<td>Influenza</td>
<td>25-28%</td>
<td>Oseltamivir, zanamivir, peramivir</td>
<td>Antiviral resistance may develop</td>
</tr>
<tr>
<td>Parainfluenza</td>
<td>30-37%</td>
<td>IVIG? GSK1817 (invest)</td>
<td></td>
</tr>
<tr>
<td>Adenovirus</td>
<td>30-50%</td>
<td>Cidofovir, CMX 001 (invest)</td>
<td>May disseminate</td>
</tr>
<tr>
<td>hMPV</td>
<td>33-40%</td>
<td>IVIG?</td>
<td>27-41% progress from URI to LRI</td>
</tr>
<tr>
<td>Coronavirus</td>
<td>?</td>
<td>?</td>
<td>Progression to LRI remains unclear</td>
</tr>
<tr>
<td>Rhinovirus</td>
<td>>5%</td>
<td>?</td>
<td>Severity unclear</td>
</tr>
</tbody>
</table>

Respiratory infections in HSC transplant patients

- **Pneumococcal pneumonia**
- **Borrelia hermsii** with capillary leak and ARDS
- **Adenovirus**
- **Hantavirus pulmonary syndrome**
- **MRSA pneumonia**
- **Group A streptococcus** with TSS

Case
An 18 y/o man presents in March in Portland OR with several days of fever, cough, chest pain, tachypnea, hypoxia and conjunctivitis with this CXR. WBC 3.0, platelets 160, CRP 2.5, AST 75

Adenovirus
- DS DNA; 7 species, 50 serotypes
- Associated with URI, pharyngitis, pneumonia, conjunctivitis, hemorrhagic cystitis, gastroenteritis, hepatitis, disseminated disease
- Outbreaks of pneumonia in day care, closed settings, stressed populations e.g. military barracks
- No real seasonality
- Cidofovir, Brincidofovir have been used for Rx

Adenovirus in transplant patients
- More common with Campath (alemtuzumab)
- URI progresses to LRI in about half, with high mortality
- May disseminate and cause severe hepatitis, encephalitis
- May cause hemorrhagic cystitis, tubulointerstitial nephritis
- May lead to loss of graft in SOT patients
- Diagnosis by PCR of respiratory secretions, blood, pathology of organ biopsy

Question #7
2 days later he is in ICU on high levels of support.

You suspect:
A. Pneumococcal pneumonia
B. **Borrelia hermsii** with capillary leak and ARDS
C. Adenovirus
D. Hantavirus pulmonary syndrome
E. MRSA pneumonia
F. Group A streptococcus with TSS

Question #8
A 71 y/o man with COPD, history of MI is admitted in January with progressive dyspnea, cough, tachypnea, low grade fever. ROS is positive for rhinitis.

- He has been spending time with young grandchild who has bronchiolitis
- CXR shows bilateral perihilar infiltrates consistent with pneumonia.
4 - Respiratory Viral Infections Including Influenza, Immunocompetent, and Immunocompromised Patients

Speaker: Andrew T. Pavia, MD

Question #8 Continued

The recommended strategy, pending more lab results, regarding isolation should be:

A. Put him in a regular two bedded room with standard precautions
B. Put him in a single room with standard precautions
C. Put him in a single room with contact/droplet precautions
D. Put him in an airborne isolation room with airborne isolation

Question #9

- Multiplex PCR of his nasal swab shows RSV. Which of the following is correct

A. RSV is an incidental finding which might cause URI symptoms
B. RSV likely accounts for infiltrate. He should be immediately started on palivizumab (Synagis) and ribavirin
C. RSV likely accounts for infiltrate. Supportive care is appropriate
D. He has high risk CAP and should be started on vancomycin and piperacillin tazobactam

RSV, hMPV in older adults

- Viruses are common as cause of CAP in elderly
- COPD and heart disease are risk factors
- May also present as exacerbation of COPD or CHF
- Exposure to children probably a risk factor
- Nosocomial transmission has been documented and testing and use of appropriate precautions may be important

RSV

- Most common cause of LRTI in children
- Common cause of URI with rhinitis in adults. AE-COPD, worsened CHF, asthma exacerbation and pneumonia in elderly and immunocompromised
- Transmitted by large droplet and contact; nosocomial transmission in hospitals and ECF
- Late fall to spring (usually December- April)
- As common as influenza among hospitalized persons > 65

RSV

- Long incubation period 2-8 days
- Diagnosis by antigen detection, PCR
- No indications for palivizumab (Synagis) in adults
- Inhaled ribavirin controversial
 - Limited efficacy, high cost, occupational risk
- Case series suggest benefit aerosolized RBV +/-IVIG in HSCT patient with LRTI; no good data in SOT.
- Oral ribavirin appears equally effective

©2020 Infectious Disease Board Review, LLC
4 - Respiratory Viral Infections Including Influenza, Immunocompetent, and Immunocompromised Patients

Speaker: Andrew T. Pavia, MD

Human Metapneumovirus

- "Discovered" in the last decades
- Nonsegmented, single stranded, negative sense RNA virus: Paramyxoviridae family, Pneumovirinae subfamily
- Causes URI, bronchiolitis, pneumonia similar to RSV
- Winter/Spring in temperate climates
- In younger adults, URI common with sore throat, hoarseness, wheezing, asthma exacerbation, AE-COPD, and CAP
- More severe in elderly, more wheezing; ECF outbreaks
- Mortality among HSC transplant similar to RSV

Parainfluenza virus

- Paramyxovirus with 4 subtypes 1-4
- Spring and fall seasonality
- Causes URI, bronchiolitis, croup, pneumonia in children. Parainfluenza 3 more severe.
- Causes URI, cough illness and viral pneumonia in adults
- May cause severe disease in transplant patients and all respiratory viruses be associated with COP (formerly known as BOOP)

Other Human Coronaviruses

- HuCoV 229e, HuCoV OC43
 - "Older" associated predominantly with URI
- HuCoV HKU1, HuCoV NL63
 - Recently described using molecular techniques. Associated with URI and some pediatric and adult pneumonia
 - May be detected on newer multiplex platforms (Luminex, FilmArray). Do not cross react with SARS-CoV-2
 - Can cause severe disease in HSCT population

MERS coronavirus

- Discovered April 2012
- > 600 cases in or with contact with Gulf area, predominantly Saudi Arabia
- Transmission documented in health care settings and families but to date, super spreaders suspected in Korea
- Mortality 56% with small number of asymptomatic
- Closest relative is a bat virus
- Camels play important role
Question #10

- A 35 yo man is admitted to the ICU in July with fever, respiratory failure, hypotension.
- 5 days PTA he complained of having the “flu;” fever, malaise, myalgia, mild abd pain.
- History: Recently camped in cabins at Yosemite National Park which has had rodent infestations issues.
- Has parakeet, dogs, cat had kittens recently, owns a hot tub. 2 kids in daycare have URI.

Question #10 (con't.)

- Labs: Hct 52; WBC 6.0 (20% bands, 45% polys, 2+ atypical lymphs), platelets 90K,
- AST 105, PT 18, PTT 25
- CXR: Rapidly progressing bilateral infiltrates leading to white out

Hantavirus Pulmonary Syndrome HPS

- First described in a 1993 outbreak in the 4 Corners
- Recent outbreak in Yosemite. Endemic cases of HPS in much of US, Chile, Argentina
- Caused by specific North American and Latin American hantaviruses – member of Bunya virus family.
 - Previously unrecognized viruses cause HPS, Sin Nombre virus, Black Creek Canal, New York virus
 - Prior to the HPS outbreak, the only known hantaviruses were those that caused HFRS
Stages of Hantavirus Pulmonary Syndrome (HPS)
- Incubation (4-30 days)
- Febrile phase
 - Fever, myalgia, malaise occasionally N, V, abd pain
- Cardiopulmonary phase
- Diuretic phase
- Convalescent phase

HPS-Cardiopulmonary Phase
- Acute onset of cough an dyspnea
- Presentation and rapid progression of shock and pulmonary edema (4-24h non-productive cough and tachypnea (shortness of breath)
- Hypovolemia due to progressive leakage of high protein fluid from blood to lung interstitium and alveoli, decreased cardiac function

HPS-Cardiopulmonary Phase
- Hypotension and oliguria
- **Critical clues:**
 - Thrombocytopenia (98%),
 - Hemoconcentration
 - Left shift with atypical lymphs
 - Elevated PT, abnormal LFTs

Good Luck on the Exam!
andy.pavia@hsc.utah.edu
@AndrewPaviaMD